In
algebraic geometry, the smooth completion (or smooth compactification) of a
smooth
Smooth may refer to:
Mathematics
* Smooth function, a function that is infinitely differentiable; used in calculus and topology
* Smooth manifold, a differentiable manifold for which all the transition maps are smooth functions
* Smooth algebrai ...
affine algebraic curve ''X'' is a
complete smooth
algebraic curve
In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane ...
which contains ''X'' as an open subset. Smooth completions exist and are unique over a
perfect field In algebra, a field ''k'' is perfect if any one of the following equivalent conditions holds:
* Every irreducible polynomial over ''k'' has distinct roots.
* Every irreducible polynomial over ''k'' is separable.
* Every finite extension of ''k' ...
.
Examples
An affine form of a
hyperelliptic curve
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus ''g'' > 1, given by an equation of the form
y^2 + h(x)y = f(x)
where ''f''(''x'') is a polynomial of degree ''n'' = 2''g'' + 1 > 4 or ''n'' = 2''g'' + 2 > 4 with ''n'' dis ...
may be presented as
where
and ()
has distinct roots and has degree at least 5. The Zariski closure of the affine curve in
is singular at the unique
infinite
Infinite may refer to:
Mathematics
* Infinite set, a set that is not a finite set
*Infinity, an abstract concept describing something without any limit
Music
*Infinite (group), a South Korean boy band
*''Infinite'' (EP), debut EP of American m ...
point added. Nonetheless, the affine curve can be embedded in a unique compact
Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed ver ...
called its smooth completion. The projection of the Riemann surface to
is 2-to-1 over the singular point at infinity if
has even degree, and 1-to-1 (but ramified) otherwise.
This smooth completion can also be obtained as follows. Project the affine curve to the affine line using the ''x''-coordinate. Embed the affine line into the projective line, then take the normalization of the projective line in the function field of the affine curve.
Applications
A smooth connected curve over an algebraically closed field is called hyperbolic if
where ''g'' is the genus of the smooth completion and ''r'' is the number of added points.
Over an algebraically closed field of characteristic 0, the
fundamental group of ''X'' is free with
generators if ''r''>0.
(Analogue of
Dirichlet's unit theorem
In mathematics, Dirichlet's unit theorem is a basic result in algebraic number theory due to Peter Gustav Lejeune Dirichlet. It determines the rank of the group of units in the ring of algebraic integers of a number field . The regulator is a pos ...
) Let ''X'' be a smooth connected curve over a finite field. Then the units of the ring of regular functions ''O(X)'' on ''X'' is a finitely generated abelian group of rank ''r'' -1.
Construction
Suppose the base field is perfect. Any affine curve ''X'' is isomorphic to an open subset of an integral projective (hence complete) curve. Taking the normalization (or
blowing up
In mathematics, blowing up or blowup is a type of geometric transformation which replaces a subspace of a given space with all the directions pointing out of that subspace. For example, the blowup of a point in a plane replaces the point with the ...
the singularities) of the projective curve then gives a smooth completion of ''X''. Their points correspond to the
discrete valuations of the
function field that are trivial on the base field.
By construction, the smooth completion is a
projective curve which contains the given curve as an everywhere dense open subset, and the added new points are smooth. Such a (projective) completion always exists and is unique.
If the base field is not perfect, a smooth completion of a smooth affine curve doesn't always exist. But the above process always produces a
regular completion if we start with a regular affine curve (smooth varieties are regular, and the converse is true over perfect fields). A regular completion is unique and, by the
valuative criterion of properness, any morphism from the affine curve to a complete algebraic variety extends uniquely to the regular completion.
Generalization
If ''X'' is a
separated algebraic variety, a
theorem of Nagata says that ''X'' can be embedded as an open subset of a complete algebraic variety. If ''X'' is moreover smooth and the base field has characteristic 0, then by
Hironaka's theorem ''X'' can even be embedded as an open subset of a complete smooth algebraic variety, with boundary a normal crossing divisor. If ''X'' is quasi-projective, the smooth completion can be chosen to be projective.
However, contrary to the one-dimensional case, there is no uniqueness of the smooth completion, nor is it canonical.
See also
*
Hyperelliptic curve
In algebraic geometry, a hyperelliptic curve is an algebraic curve of genus ''g'' > 1, given by an equation of the form
y^2 + h(x)y = f(x)
where ''f''(''x'') is a polynomial of degree ''n'' = 2''g'' + 1 > 4 or ''n'' = 2''g'' + 2 > 4 with ''n'' dis ...
*
Bolza surface
In mathematics, the Bolza surface, alternatively, complex algebraic Bolza curve (introduced by ), is a compact Riemann surface of genus 2 with the highest possible order of the conformal automorphism group in this genus, namely GL_2(3) of order 48 ...
References
Bibliography
*
* (see chapter 4).
{{Algebraic curves navbox
Algebraic geometry
Riemann surfaces
Algebraic curves
Birational geometry