Small Cubicuboctahedron
   HOME

TheInfoList



OR:

In
geometry Geometry (; ) is a branch of mathematics concerned with properties of space such as the distance, shape, size, and relative position of figures. Geometry is, along with arithmetic, one of the oldest branches of mathematics. A mathematician w ...
, the small cubicuboctahedron is a
uniform star polyhedron In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, ...
, indexed as U13. It has 20 faces (8
triangles A triangle is a polygon with three corners and three sides, one of the basic shapes in geometry. The corners, also called ''vertices'', are zero-dimensional points while the sides connecting them, also called ''edges'', are one-dimensiona ...
, 6
squares In geometry, a square is a regular polygon, regular quadrilateral. It has four straight sides of equal length and four equal angles. Squares are special cases of rectangles, which have four equal angles, and of rhombuses, which have four equal si ...
, and 6 octagons), 48 edges, and 24 vertices. Its
vertex figure In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a general -polytope is sliced off. Definitions Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connected ed ...
is a
crossed quadrilateral In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
. The small cubicuboctahedron is a
faceting Stella octangula as a faceting of the cube In geometry, faceting (also spelled facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new Vertex (geometry), vertices. New edges of a faceted po ...
of the
rhombicuboctahedron In geometry, the rhombicuboctahedron is an Archimedean solid with 26 faces, consisting of 8 equilateral triangles and 18 squares. It was named by Johannes Kepler in his 1618 Harmonices Mundi, being short for ''truncated cuboctahedral rhombus'', w ...
. Its square faces and its octagonal faces are parallel to those of a
cube A cube or regular hexahedron is a three-dimensional space, three-dimensional solid object in geometry, which is bounded by six congruent square (geometry), square faces, a type of polyhedron. It has twelve congruent edges and eight vertices. It i ...
, while its triangular faces are parallel to those of an
octahedron In geometry, an octahedron (: octahedra or octahedrons) is any polyhedron with eight faces. One special case is the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex. Many types of i ...
: hence the name ''cubicuboctahedron''. The ''small'' suffix serves to distinguish it from the great cubicuboctahedron, which also has faces in the aforementioned directions.


Related polyhedra

It shares its
vertex arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
with the
stellated truncated hexahedron In geometry, the stellated truncated hexahedron (or quasitruncated hexahedron, and stellatruncated cube) is a uniform star polyhedron, indexed as U19. It has 14 faces (8 triangles and 6 octagrams), 36 edges, and 24 vertices. It is represented b ...
. It additionally shares its
edge arrangement In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes. For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
with the rhombicuboctahedron (having the triangular faces and 6 square faces in common), and with the
small rhombihexahedron In geometry, the small rhombihexahedron (or small rhombicube) is a nonconvex uniform polyhedron, indexed as U18. It has 18 faces (12 squares and 6 octagons), 48 edges, and 24 vertices. Its vertex figure is an antiparallelogram. Related polyhedra ...
(having the octagonal faces in common).


Related tilings

As the Euler characteristic suggests, the small cubicuboctahedron is a
toroidal polyhedron In geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a -holed torus), having a topology (Mathematics), topological Genus (mathematics), genus () of 1 or greater. Notable examples include the Császár polyhedron, Császár a ...
of genus 3 (topologically it is a surface of genus 3), and thus can be interpreted as a (polyhedral)
immersion Immersion may refer to: The arts * "Immersion", a 2012 story by Aliette de Bodard * ''Immersion'', a French comic book series by Léo Quievreux * ''Immersion'' (album), the third album by Australian group Pendulum * ''Immersion'' (film), a 2021 ...
of a genus 3 polyhedral surface, in the complement of its 24 vertices, into 3-space. (A neighborhood of any vertex is topologically a cone on a figure-8, which cannot occur in an immersion. Note that the Richter reference overlooks this fact.) The underlying polyhedron (ignoring self-intersections) defines a uniform tiling of this surface, and so the small cubicuboctahedron is a uniform polyhedron. In the language of
abstract polytope In mathematics, an abstract polytope is an algebraic partially ordered set which captures the dyadic property of a traditional polytope without specifying purely geometric properties such as points and lines. A geometric polytope is said to be ...
s, the small cubicuboctahedron is a ''faithful realization'' of this abstract toroidal polyhedron, meaning that it is a nondegenerate polyhedron and that they have the same symmetry group. In fact, every automorphism of the abstract genus 3 surface with this tiling is realized by an isometry of Euclidean space. Higher genus surfaces (genus 2 or greater) admit a metric of negative
constant curvature In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvature is ...
(by the
uniformization theorem In mathematics, the uniformization theorem states that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generali ...
), and the
universal cover In topology, a covering or covering projection is a map between topological spaces that, intuitively, locally acts like a projection of multiple copies of a space onto itself. In particular, coverings are special types of local homeomorphism ...
of the resulting
Riemann surface In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
is the
hyperbolic plane In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with: :For any given line ''R'' and point ''P' ...
. The corresponding tiling of the hyperbolic plane has vertex figure 3.8.4.8 (triangle, octagon, square, octagon). If the surface is given the appropriate metric of curvature = −1, the covering map is a local isometry and thus the ''abstract'' vertex figure is the same. This tiling may be denoted by the
Wythoff symbol In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform po ...
3 4 , 4, and is depicted on the right. Alternatively and more subtly, by chopping up each square face into 2 triangles and each octagonal face into 6 triangles, the small cubicuboctahedron can be interpreted as a non-regular ''coloring'' of the combinatorially ''regular'' (not just ''uniform'') tiling of the genus 3 surface by 56 equilateral triangles, meeting at 24 vertices, each with degree 7. Note each face in the polyhedron consist of multiple faces in the tiling, hence the description as a "coloring" – two triangular faces constitute a square face and so forth, as pe
this explanatory image
This regular tiling is significant as it is a tiling of the
Klein quartic In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus with the highest possible order automorphism group for this genus, namely order orientation-preserving automorphisms, and automorphisms i ...
, the genus 3 surface with the most symmetric metric (automorphisms of this tiling equal isometries of the surface), and the orientation-preseserving automorphism group of this surface is isomorphic to the
projective special linear group In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associa ...
PSL(2,7), equivalently GL(3,2) (the order 168 group of all orientation-preserving isometries). Note that the small cubicuboctahedron is ''not'' a realization of this abstract polyhedron, as it only has 24 orientation-preserving symmetries (not every abstract automorphism is realized by a Euclidean isometry) – the isometries of the small cubicuboctahedron preserve not only the triangular tiling, but also the coloring, and hence are a proper subgroup of the full isometry group. The corresponding tiling of the hyperbolic plane (the universal covering) is the
order-7 triangular tiling In geometry, the order-7 triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of . Hurwitz surfaces The symmetry group of the tiling is the (2,3,7) triangle group, and a fundamental domain for this action is th ...
. The automorphism group of the Klein quartic can be augmented (by a symmetry which is not realized by a symmetry of the polyhedron, namely "exchanging the two endpoints of the edges that bisect the squares and octahedra) to yield the
Mathieu group In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 objec ...
M24.


See also

* Compound of five small cubicuboctahedra *
List of uniform polyhedra In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive ( transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are ...


References

*


External links

* {{mathworld2 , urlname = SmallCubicuboctahedron, title = Small cubicuboctahedron , urlname2 = UniformPolyhedron, title2 = Uniform polyhedron Toroidal polyhedra