In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, the small cubicuboctahedron is a
uniform star polyhedron
In geometry, a uniform star polyhedron is a self-intersecting uniform polyhedron. They are also sometimes called nonconvex polyhedra to imply self-intersecting. Each polyhedron can contain either star polygon faces, star polygon vertex figures, ...
, indexed as U
13. It has 20 faces (8
triangles
A triangle is a polygon with three edges and three vertices. It is one of the basic shapes in geometry. A triangle with vertices ''A'', ''B'', and ''C'' is denoted \triangle ABC.
In Euclidean geometry, any three points, when non-collinear ...
, 6
squares
In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90- degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length a ...
, and 6
octagons), 48 edges, and 24 vertices. Its
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
is a
crossed quadrilateral
In geometry a quadrilateral is a four-sided polygon, having four edges (sides) and four corners (vertices). The word is derived from the Latin words ''quadri'', a variant of four, and ''latus'', meaning "side". It is also called a tetragon, ...
.
The small cubicuboctahedron is a
faceting
Stella octangula as a faceting of the cube
In geometry, faceting (also spelled facetting) is the process of removing parts of a polygon, polyhedron or polytope, without creating any new Vertex (geometry), vertices.
New edges of a faceted pol ...
of the
rhombicuboctahedron
In geometry, the rhombicuboctahedron, or small rhombicuboctahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at ea ...
. Its square faces and its octagonal faces are parallel to those of a
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
, while its triangular faces are parallel to those of an
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
: hence the name ''cubicuboctahedron''. The ''small'' suffix serves to distinguish it from the
great cubicuboctahedron, which also has faces in the aforementioned directions.
Related polyhedra
It shares its
vertex arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes.
For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equ ...
with the
stellated truncated hexahedron. It additionally shares its
edge arrangement
In geometry, a vertex arrangement is a set of points in space described by their relative positions. They can be described by their use in polytopes.
For example, a ''square vertex arrangement'' is understood to mean four points in a plane, equa ...
with the rhombicuboctahedron (having the triangular faces and 6 square faces in common), and with the
small rhombihexahedron
In geometry, the small rhombihexahedron (or small rhombicube) is a nonconvex uniform polyhedron, indexed as U18. It has 18 faces (12 squares and 6 octagons), 48 edges, and 24 vertices. Its vertex figure is an antiparallelogram.
Related polyhedr ...
(having the octagonal faces in common).
Related tilings
As the Euler characteristic suggests, the small cubicuboctahedron is a
toroidal polyhedron
In geometry, a toroidal polyhedron is a polyhedron which is also a toroid (a -holed torus), having a topological genus () of 1 or greater. Notable examples include the Császár and Szilassi polyhedra.
Variations in definition
Toroidal polyhedr ...
of genus 3 (topologically it is a surface of genus 3), and thus can be interpreted as a (polyhedral)
immersion
Immersion may refer to:
The arts
* "Immersion", a 2012 story by Aliette de Bodard
* ''Immersion'', a French comic book series by Léo Quievreux#Immersion, Léo Quievreux
* Immersion (album), ''Immersion'' (album), the third album by Australian gro ...
of a genus 3 polyhedral surface, in the complement of its 24 vertices, into 3-space. (A neighborhood of any vertex is topologically a cone on a figure-8, which cannot occur in an immersion. Note that the Richter reference overlooks this fact.) The underlying polyhedron (ignoring self-intersections) defines a uniform tiling of this surface, and so the small cubicuboctahedron is a uniform polyhedron. In the language of
abstract polytope
In mathematics, an abstract polytope is an algebraic partially ordered set which captures the dyadic property of a traditional polytope without specifying purely geometric properties such as points and lines.
A geometric polytope is said to be ...
s, the small cubicuboctahedron is a ''faithful realization'' of this abstract toroidal polyhedron, meaning that it is a nondegenerate polyhedron and that they have the same symmetry group. In fact, every automorphism of the abstract genus 3 surface with this tiling is realized by an isometry of Euclidean space.
Higher genus surfaces (genus 2 or greater) admit a metric of negative
constant curvature
In mathematics, constant curvature is a concept from differential geometry. Here, curvature refers to the sectional curvature of a space (more precisely a manifold) and is a single number determining its local geometry. The sectional curvature i ...
(by the
uniformization theorem
In mathematics, the uniformization theorem says that every simply connected Riemann surface is conformally equivalent to one of three Riemann surfaces: the open unit disk, the complex plane, or the Riemann sphere. The theorem is a generalization o ...
), and the
universal cover A covering of a topological space X is a continuous map \pi : E \rightarrow X with special properties.
Definition
Let X be a topological space. A covering of X is a continuous map
: \pi : E \rightarrow X
such that there exists a discrete spa ...
of the resulting
Riemann surface
In mathematics, particularly in complex analysis, a Riemann surface is a connected one-dimensional complex manifold. These surfaces were first studied by and are named after Bernhard Riemann. Riemann surfaces can be thought of as deformed vers ...
is the
hyperbolic plane
In mathematics, hyperbolic geometry (also called Lobachevskian geometry or Bolyai– Lobachevskian geometry) is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:
:For any given line ''R'' and point ''P'' ...
. The corresponding
tiling of the hyperbolic plane has vertex figure 3.8.4.8 (triangle, octagon, square, octagon). If the surface is given the appropriate metric of curvature = −1, the covering map is a
local isometry and thus the
''abstract'' vertex figure is the same. This tiling may be denoted by the
Wythoff symbol
In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform pol ...
3 4 , 4, and is depicted on the right.
Alternatively and more subtly, by chopping up each square face into 2 triangles and each octagonal face into 6 triangles, the small cubicuboctahedron can be interpreted as a non-regular ''coloring'' of the combinatorially ''regular'' (not just ''uniform'') tiling of the genus 3 surface by 56 equilateral triangles, meeting at 24 vertices, each with degree 7.
[ Note each face in the polyhedron consist of multiple faces in the tiling, hence the description as a "coloring" – two triangular faces constitute a square face and so forth, as pe]
this explanatory image
This regular tiling is significant as it is a tiling of the
Klein quartic
In hyperbolic geometry, the Klein quartic, named after Felix Klein, is a compact Riemann surface of genus with the highest possible order automorphism group for this genus, namely order orientation-preserving automorphisms, and automorphisms ...
, the genus 3 surface with the most symmetric metric (automorphisms of this tiling equal isometries of the surface), and the orientation-preseserving automorphism group of this surface is isomorphic to the
projective special linear group
In mathematics, especially in the group theoretic area of algebra, the projective linear group (also known as the projective general linear group or PGL) is the induced action of the general linear group of a vector space ''V'' on the associate ...
PSL(2,7), equivalently GL(3,2) (the order 168 group of all orientation-preserving isometries). Note that the small cubicuboctahedron is ''not'' a realization of this abstract polyhedron, as it only has 24 orientation-preserving symmetries (not every abstract automorphism is realized by a Euclidean isometry) – the isometries of the small cubicuboctahedron preserve not only the triangular tiling, but also the coloring, and hence are a proper subgroup of the full isometry group.
The corresponding tiling of the hyperbolic plane (the universal covering) is the
order-7 triangular tiling
In geometry, the order-7 triangular tiling is a regular tiling of the hyperbolic plane with a Schläfli symbol of .
Hurwitz surfaces
The symmetry group of the tiling is the (2,3,7) triangle group, and a fundamental domain for this action is the ...
. The automorphism group of the Klein quartic can be augmented (by a symmetry which is not realized by a symmetry of the polyhedron, namely "exchanging the two endpoints of the edges that bisect the squares and octahedra) to yield the
Mathieu group
In group theory, a topic in abstract algebra, the Mathieu groups are the five sporadic simple groups ''M''11, ''M''12, ''M''22, ''M''23 and ''M''24 introduced by . They are multiply transitive permutation groups on 11, 12, 22, 23 or 24 obje ...
M
24.
See also
*
Compound of five small cubicuboctahedra
*
List of uniform polyhedra
In geometry, a uniform polyhedron is a polyhedron which has regular polygons as faces and is vertex-transitive ( transitive on its vertices, isogonal, i.e. there is an isometry mapping any vertex onto any other). It follows that all vertices are c ...
References
*
External links
* {{mathworld2 , urlname = SmallCubicuboctahedron, title = Small cubicuboctahedron , urlname2 = UniformPolyhedron, title2 = Uniform polyhedron
Toroidal polyhedra