Slip Bands
   HOME

TheInfoList



OR:

Formation of slip bands indicates a concentrated unidirectional
slip Slip or SLIP may refer to: Science and technology Biology * Slip (fish), also known as Black Sole * Slip (horticulture), a small cutting of a plant as a specimen or for grafting * Muscle slip, a branching of a muscle, in anatomy Computing and ...
on certain planes causing a stress concentration. Typically, slip bands induce surface steps (e.g., roughness due
persistent slip bands Formation of slip bands indicates a concentrated unidirectional Slip (materials science), slip on certain planes causing a stress concentration. Typically, slip bands induce surface steps (e.g., roughness due persistent slip bands during Fatigue ( ...
during
fatigue Fatigue describes a state of tiredness that does not resolve with rest or sleep. In general usage, fatigue is synonymous with extreme tiredness or exhaustion that normally follows prolonged physical or mental activity. When it does not resolve ...
) and a stress concentration which can be a crack nucleation site. Slip bands extend until impinged by a boundary, and the generated stress from dislocation pile-up against that boundary will either stop or transmit the operating slip. Formation of slip bands under cyclic conditions is addressed as
persistent slip bands Formation of slip bands indicates a concentrated unidirectional Slip (materials science), slip on certain planes causing a stress concentration. Typically, slip bands induce surface steps (e.g., roughness due persistent slip bands during Fatigue ( ...
(PSBs) where formation under monotonic condition is addressed as dislocation planar arrays (or simply slip-bands, see ''Slip bands in the absence of cyclic loading'' section). Slip-bands can be simply viewed as boundary sliding due to dislocation glide that lacks (the complexity of ) PSBs high plastic deformation localisation manifested by tongue- and ribbon-like extrusion. And, where PSBs normally studied with (effective) Burger’s vector aligned with extrusion plane because PSB extends across the grain and exacerbate during fatigue; monotonic slip-band has a Burger’s vector for propagation and another for plane extrusions both controlled by the conditions at the tip.


Persistent slip bands (PSBs)

Persistent slip-bands (PSBs) are associated with
strain Strain may refer to: Science and technology * Strain (biology), variants of plants, viruses or bacteria; or an inbred animal used for experimental purposes * Strain (chemistry), a chemical stress of a molecule * Strain (injury), an injury to a mu ...
localisation due to
fatigue Fatigue describes a state of tiredness that does not resolve with rest or sleep. In general usage, fatigue is synonymous with extreme tiredness or exhaustion that normally follows prolonged physical or mental activity. When it does not resolve ...
in metals and cracking on the same plane.
Transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
(TEM) and three-dimensional discrete
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
dynamics
DDD
simulation were used to reveal and understand
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
s type and arrangement/
patterns A pattern is a regularity in the world, in human-made design, or in abstract ideas. As such, the elements of a pattern repeat in a predictable manner. A geometric pattern is a kind of pattern formed of geometric shapes and typically repeated l ...
to relate it to the sub-surface structure. PSB – ladder structure – is formed mainly from low-density channels of mobile gliding
screw A screw and a bolt (see '' Differentiation between bolt and screw'' below) are similar types of fastener typically made of metal and characterized by a helical ridge, called a ''male thread'' (external thread). Screws and bolts are used to fa ...
dislocation segments and high-density walls of dipolar edge dislocation segments piled up with tangled bowing-out edge segment and different sizes of dipolar loops scattered between the walls and channels. One type of dislocation loop forms the boundary of a completely enclosed patch of slipped material on the slip plane which terminates at the free surface. Widening of the slip band: Screw
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
can have high enough resolved shear stress for a glide on more than one slip plane. Cross-slip can occur. But this leaves some segments of
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
on the original slip plane. Dislocation can cross-slip back on to a parallel primary slip plane. where it forms a new dislocation source, and the process can repeat. These walls in PSBs are a ‘dipole dispersion’ form of stable arrangement of edge
dislocations In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
with minimal long-range
stress Stress may refer to: Science and medicine * Stress (biology), an organism's response to a stressor such as an environmental condition * Stress (linguistics), relative emphasis or prominence given to a syllable in a word, or to a word in a phrase ...
field which has a minimal long-range stress field. Which different to slip-bands that is a planar stack of a stable array that has a strong long-range stress field. And – in the free surface – cut and open (elimination) of dislocation loops at the surface cause the irreversible/persistent surface step associated with slip-bands. Surface relief through extrusion occurs on the Burgers vector direction and extrusion height and PSB depth increase with PSB thickness. PSB and planar walls are parallel and perpendicularly aligned with the normal direction of the
Critical resolved shear stress In materials science, critical resolved shear stress (CRSS) is the component of shear stress, resolved in the direction of slip, necessary to initiate slip in a grain. Resolved shear stress (RSS) is the shear component of an applied tensile o ...
, respectively. And once dislocation saturate and reach its sessile configuration, cracks were observed to nucleate and propagate along PSB extrusions. To summarise, contrary to 2D line defects, the field at the slip-band tip is due to three-dimensional interactions where the slip band extrusion simulates a sink-like dislocation blooming along the slip band axis. The magnitude of the gradient
deformation Deformation can refer to: * Deformation (engineering), changes in an object's shape or form due to the application of a force or forces. ** Deformation (physics), such changes considered and analyzed as displacements of continuum bodies. * Defo ...
field ahead of the slip band depends on the slip height and the mechanical conditions for propagation is influenced by the emitted dislocations long range field.A surface marking, or slip band, appears at the intersection of an active slip plane and the free surface of a crystal. Slip occurs in
avalanches An avalanche is a rapid flow of snow down a slope, such as a hill or mountain. Avalanches can be set off spontaneously, by such factors as increased precipitation or snowpack weakening, or by external means such as humans, animals, and earth ...
separated in time.
Avalanches An avalanche is a rapid flow of snow down a slope, such as a hill or mountain. Avalanches can be set off spontaneously, by such factors as increased precipitation or snowpack weakening, or by external means such as humans, animals, and earth ...
from other slip systems crossing a slip plane containing an active source led to the observed stepped surface markings, with successive
avalanches An avalanche is a rapid flow of snow down a slope, such as a hill or mountain. Avalanches can be set off spontaneously, by such factors as increased precipitation or snowpack weakening, or by external means such as humans, animals, and earth ...
from the given source displaced relative to each other. Dislocations are generated on a single slip plane They point out that a dislocation segment (
Frank–Read source In materials science, a Frank–Read source is a mechanism explaining the generation of multiple dislocations in specific well-spaced slip planes in crystals when they are deformed. When a crystal is deformed, in order for slip to occur, disloc ...
), lying in a slip plane and pinned at both ends, is a source of an unlimited number of dislocation loops. In this way the grouping of dislocations into an avalanche of a thousand or so loops on a single slip plane can be understood. Each dislocation loop has a stress field that opposes the applied stress in the neighbourhood of the source. When enough loops have been generated, the stress at the source will fall to a value so low that additional loops cannot form. Only after the original avalanche of loops has moved some distance away can another avalanche occur. Generation of the first
avalanche An avalanche is a rapid flow of snow down a slope, such as a hill or mountain. Avalanches can be set off spontaneously, by such factors as increased precipitation or snowpack weakening, or by external means such as humans, animals, and earth ...
at a source is easily understood. When the stress at the source reaches r*, loops are generated, and continue to be generated until the back-stress stops the
avalanche An avalanche is a rapid flow of snow down a slope, such as a hill or mountain. Avalanches can be set off spontaneously, by such factors as increased precipitation or snowpack weakening, or by external means such as humans, animals, and earth ...
. A second avalanche will not occur immediately in polycrystals, for the loops in the first avalanche are stopped or partially stopped at grain boundaries. Only if the external stress is increased substantially will a second avalanche be formed. In this way the formation of additional
avalanches An avalanche is a rapid flow of snow down a slope, such as a hill or mountain. Avalanches can be set off spontaneously, by such factors as increased precipitation or snowpack weakening, or by external means such as humans, animals, and earth ...
with rising stress can be understood. It remains to explain the displacement of successive
avalanches An avalanche is a rapid flow of snow down a slope, such as a hill or mountain. Avalanches can be set off spontaneously, by such factors as increased precipitation or snowpack weakening, or by external means such as humans, animals, and earth ...
by a small amount normal to the slip plane, thereby accounting for the observed fine structure of slip bands. A displacement of this type requires that a
Frank–Read source In materials science, a Frank–Read source is a mechanism explaining the generation of multiple dislocations in specific well-spaced slip planes in crystals when they are deformed. When a crystal is deformed, in order for slip to occur, disloc ...
move relative to the surface where slip bands are observed. In situ nano-compression work in
Transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
(TEM) reveals that the deformation of a-Fe at the nanoscale is an inhomogeneous process characterized by a series of short displacement bursts and intermittent large displacement bursts. The series of short bursts correspond to the collective movement of
dislocations In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
within the crystal. The large single bursts are from SBs nucleated from the specimen surface. These results suggest that the formation of SBs can be considered as a source-limited plasticity process. The initial plastic deformation is characterized by the multiplication/ movement of a few dislocations over short distances due to the availability of dislocation sources within the nano-blade. Once it has reached a stage at which the mobile dislocations along preferred slips planes have moved through the nano-blade or become entangled in sessile configurations and further dislocation movement is difficult within the crystal, plasticity is carried out by the formation of SBs, which nucleate from the surface and then propagate through the nano-blade. Fisher ''et al.'' proposed that SBs are dynamically generated from a
Frank–Read source In materials science, a Frank–Read source is a mechanism explaining the generation of multiple dislocations in specific well-spaced slip planes in crystals when they are deformed. When a crystal is deformed, in order for slip to occur, disloc ...
at the specimen surface and are terminated by their own stress field in single crystals. the displacement burst behaviour reported by Kiener and Minor on compressing Cu single crystal nanopillars. Obviously suppressed the progress of serrated yielding (a series of short strain bursts) relative to that without the spinodal nanostructure. The results revealed that during compression deformation, the spinodal nanostructure confined the movement of dislocations (leading to a significant increase in dislocation density), causing a notable strengthening effect, and also kept the slip band morphology planar. Dislocation activity assists the growth of
austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
precipitates and provide quantitative data for revealing the stress field generated by interface migration. The jerky nature of the tip moving rate is probably due to the accumulation and relaxation of stress field near the tip. After leaving from the tip, the
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
loop expands rapidly ahead of the tip thus the change in tip velocity is concomitant with dislocation emission. It indicates that the emitted dislocation is strongly repelled by the stress field present at the lath tip. When the loop meets the foil surface, it breaks into two
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
segments that leave a visible trace, due to the presence of a thin oxide layer on the surface. The emission of a dislocation loop from the tip may also affect tip moving rate via interaction between the local dislocation loop and the possible interfacial
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
s in the semi-coherent interface surrounding the tip. consequently, the tip halted temporarily. The net shear stress acting on each dislocation results from a combination of the stress field at the lath tip (τtip), the image stress tending to attract the dislocation loop to the surface (τimage), the line tension (τl) and the interaction stress between dislocations (τinter). This implies the strain field due to the transformation of austenite is large enough to cause the nucleation and emission of dislocations from an
austenite Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K ...
lath tip.


Slip bands in the absence of cyclic loading

While repeatedly reversed loading commonly leads to localisation of dislocation glide, creating linear extrusions and intrusions on a free surface, similar features can arise even if there is no load reversal. These arise from dislocations gliding on a particular slip plane, in a particular slip direction (within a single grain), under an external load. Steps can be created on the free surface as a consequence of the tendency for dislocations to follow one another along a glide path, of which there may be several in parallel with each other in the grain concerned. Prior passage of dislocations apparently makes glide easier for subsequent ones, and the effect may also be associated with dislocation sources, such as a Frank-Read source, acting in particular planes. The appearance of such bands, which are sometimes termed “persistent slip lines”, is similar to that of those arising from cyclic loading, but the resultant steps are usually more localised and have lower heights. They also reveal the
grain structure A crystallite is a small or even microscopic crystal which forms, for example, during the cooling of many materials. Crystallites are also referred to as grains. Bacillite is a type of crystallite. It is rodlike with parallel longulites. Stru ...
. They can often be seen on free surfaces that were polished before the deformation took place. For example, the figure shows micrographs (taken with different magnifications) of the region around an indent created in a copper sample with a spherical indenter. The parallel lines within individual grains are each the result of several hundred dislocations of the same type reaching the free surface, creating steps with a height of the order of a few microns. If a single slip system was operational within a grain, then there is just one set of lines, but it is common for more than one system to be activated within a grain (particularly when the strain is relatively high), leading to two or more sets of parallel lines. Other features indicative of the details of how the plastic deformation took place, such as a region of cooperative shear caused by
deformation twinning Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightl ...
, can also sometimes be seen on such surfaces. In the optical micrograph shown, there is also evidence of grain rotations – for example, at the “rim” of the indent and in the form of depressions at
grain boundaries In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional crystallographic defect, defects in the crystal structure, and tend to decrease the ...
. Such images can thus be very informative.


Nature of the slip band local field

The deformation field at the slip-band is due to three-dimensional elastic and plastic strains where the concentrated shear of the slip band tip deforms the grain in its vicinity. The elastic strains describe the stress concentration ahead of the slip band, which is important as it can affect the transfer of plastic deformation across grain boundaries. An understanding of this is needed to support the study of yield and inter/intra-granular fracture. The concentrated shear of slip bands can also nucleate cracks in the plane of the slip band, and persistent slip bands that lead to intragranular
fatigue Fatigue describes a state of tiredness that does not resolve with rest or sleep. In general usage, fatigue is synonymous with extreme tiredness or exhaustion that normally follows prolonged physical or mental activity. When it does not resolve ...
crack initiation and growth may also form under cyclic loading conditions. To properly characterise slip bands and validate mechanistic models for their interactions with microstructure, it is crucial to quantify the local
deformation Deformation can refer to: * Deformation (engineering), changes in an object's shape or form due to the application of a force or forces. ** Deformation (physics), such changes considered and analyzed as displacements of continuum bodies. * Defo ...
fields associated with their propagation. However, little attention has been given to slip bands within grains (i.e., in the absence of
grain boundary In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal ...
interaction). The long-range stress field (i.e., the elastic strain field) around the tip of a stress concentrator, such as a slip band,, can be considered a singularity equivalent to that of a crack. This singularity can be quantified using a path independent integral since it satisfies the conservation laws of elasticity. The conservation laws of elasticity related to translational, rotational, and scaling symmetries were derived initially by Knowles and Sternberg from the
Noether's theorem Noether's theorem or Noether's first theorem states that every differentiable symmetry of the action of a physical system with conservative forces has a corresponding conservation law. The theorem was proven by mathematician Emmy Noether in ...
. Budiansky and
Rice Rice is the seed of the grass species ''Oryza sativa'' (Asian rice) or less commonly ''Oryza glaberrima ''Oryza glaberrima'', commonly known as African rice, is one of the two domesticated rice species. It was first domesticated and grown i ...
introduced the J-, M-, L-
integral In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented i ...
and were the first to give them a physical interpretation as the strain energy-release rates for mechanisms such as cavity propagation, simultaneous uniform expansion, and defect rotation, respectively. When evaluated over a surface that encloses a defect, these conservation integrals represent a configurational force on the defect. That work paved the way for the field of
Configurational mechanics Configurational mechanics is a subdiscipline of continuum mechanics in which particular emphasis is placed on reckoning from the perspective of the material manifold. By contrast, in classical mechanics, reckoning is commonly made from the perspect ...
of materials, with the path-independent
J-integral The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 ...
now widely used to analyse the configurational forces in problems as diverse as dislocation dynamics, misfitting inclusions, propagation of cracks, shear deformation of clays, and co-planar dislocation nucleation from shear loaded cracks. The integrals have been applied to linear elastic and elastic-plastic materials and have been coupled with processes such as thermal and electrochemical loading, and internal tractions. Recently, experimental fracture mechanics studies have used full-field in situ measurements of displacements and elastic strains to evaluate the local deformation field surrounding the crack tip as a
J-integral The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 ...
. Slip bands form due to plastic deformation, and the analysis of the force on a
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
considers the two-dimensional nature of the
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
line defect. General definitions of the Peach–
Koehler Koehler is a transliteration of the German surname Köhler, referring to a man making charcoal from wood. Notable people with the surname include: * Ana Luiza Koehler (born 1977), Brazilian comics artist and architect. *Arthur Koehler (1885– ...
configurational force (𝑃𝑘𝑗) (or the elastic energy-momentum tensor ) on a dislocation in the arbitrary 𝑥1, 𝑥2, 𝑥3 coordinate system, decompose the Burgers vector (𝑏) to orthogonal components. This leads to the generalised definition of the
J-integral The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 ...
in equations below. For a dislocation pile-up, the
J-integral The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 ...
is the summation of the Peach–
Koehler Koehler is a transliteration of the German surname Köhler, referring to a man making charcoal from wood. Notable people with the surname include: * Ana Luiza Koehler (born 1977), Brazilian comics artist and architect. *Arthur Koehler (1885– ...
configurational force of the dislocations in the pile-up (including out-of-plane, 𝑏3 ). 𝐽𝑘 = ∫ 𝑃𝑘𝑗 𝑛𝑗 𝑑𝑆 = ∫(𝑊𝑠 𝑛𝑘− 𝑇𝑖 𝑢𝑖,𝑘) 𝑑𝑆 𝐽𝑘𝑥 = 𝑅𝑘𝑗 𝐽𝑗, 𝑖,𝑗,𝑘=1,2,3 where 𝑆 is an arbitrary contour around the
dislocation In materials science, a dislocation or Taylor's dislocation is a linear crystallographic defect or irregularity within a crystal structure that contains an abrupt change in the arrangement of atoms. The movement of dislocations allow atoms to sl ...
pile-up with unit outward normal 𝑛𝑖, 𝑊𝑠 is the strain energy density, 𝑇𝑖 = 𝜎𝑖𝑗 𝑛𝑗 is the traction on 𝑑𝑆, 𝑢𝑖 are the displacement vector components, 𝐽𝑘𝑥 is 𝐽-integral evaluated along the 𝑥𝑘 direction, and 𝑅𝑘𝑗 is a second-order mapping tensor that maps 𝐽𝑘 into 𝑥𝑘 direction. This vectorial 𝐽𝑘-integral leads to numerical difficulties in the analysis since 𝐽2 and, for a three-dimensional slip band or inclined crack, the 𝐽3 terms cannot be neglected.


See also

* Materials Science *
Fatigue (material) In materials science, fatigue is the initiation and propagation of cracks in a material due to cyclic loading. Once a fatigue crack has initiated, it grows a small amount with each loading cycle, typically producing striations on some parts of ...
*
Slip (materials science) In materials science, slip is the large displacement of one part of a crystal relative to another part along crystallographic planes and directions. Slip occurs by the passage of dislocations on close/packed planes, which are planes containing ...
*
Deformation twinning Crystal twinning occurs when two or more adjacent crystals of the same mineral are oriented so that they share some of the same crystal lattice points in a symmetrical manner. The result is an intergrowth of two separate crystals that are tightl ...
*
J-integral The J-integral represents a way to calculate the strain energy release rate, or work (energy) per unit fracture surface area, in a material. The theoretical concept of J-integral was developed in 1967 by G. P. Cherepanov and independently in 1968 ...


References

{{Reflist Materials science