Skolem Prenex Form
   HOME

TheInfoList



OR:

In
mathematical logic Mathematical logic is the study of logic, formal logic within mathematics. Major subareas include model theory, proof theory, set theory, and recursion theory. Research in mathematical logic commonly addresses the mathematical properties of for ...
, a
formula In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the term ''formula'' in science refers to the general construct of a relationship betwee ...
of first-order logic is in Skolem normal form if it is in
prenex normal form A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propos ...
with only universal first-order quantifiers. Every first-order
formula In science, a formula is a concise way of expressing information symbolically, as in a mathematical formula or a ''chemical formula''. The informal use of the term ''formula'' in science refers to the general construct of a relationship betwee ...
may be converted into Skolem normal form while not changing its satisfiability via a process called Skolemization (sometimes spelled Skolemnization). The resulting formula is not necessarily equivalent to the original one, but is equisatisfiable with it: it is satisfiable if and only if the original one is satisfiable. Reduction to Skolem normal form is a method for removing existential quantifiers from formal logic statements, often performed as the first step in an
automated theorem prover Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a maj ...
.


Examples

The simplest form of Skolemization is for existentially quantified variables that are not inside the
scope Scope or scopes may refer to: People with the surname * Jamie Scope (born 1986), English footballer * John T. Scopes (1900–1970), central figure in the Scopes Trial regarding the teaching of evolution Arts, media, and entertainment * Cinem ...
of a universal quantifier. These may be replaced simply by creating new constants. For example, \exists x P(x) may be changed to P(c), where c is a new constant (does not occur anywhere else in the formula). More generally, Skolemization is performed by replacing every existentially quantified variable y with a term f(x_1,\ldots,x_n) whose function symbol f is new. The variables of this term are as follows. If the formula is in
prenex normal form A formula of the predicate calculus is in prenex normal form (PNF) if it is written as a string of quantifiers and bound variables, called the prefix, followed by a quantifier-free part, called the matrix. Together with the normal forms in propos ...
, then x_1,\ldots,x_n are the variables that are universally quantified and whose quantifiers precede that of y. In general, they are the variables that are quantified universally (we assume we get rid of existential quantifiers in order, so all existential quantifiers before \exists y have been removed) and such that \exists y occurs in the scope of their quantifiers. The function f introduced in this process is called a Skolem function (or Skolem constant if it is of zero
arity Arity () is the number of arguments or operands taken by a function, operation or relation in logic, mathematics, and computer science. In mathematics, arity may also be named ''rank'', but this word can have many other meanings in mathematics. In ...
) and the term is called a Skolem term. As an example, the formula \forall x \exists y \forall z. P(x,y,z) is not in Skolem normal form because it contains the existential quantifier \exists y. Skolemization replaces y with f(x), where f is a new function symbol, and removes the quantification over The resulting formula is \forall x \forall z . P(x,f(x),z). The Skolem term f(x) contains x, but not z, because the quantifier to be removed \exists y is in the scope of \forall x, but not in that of \forall z; since this formula is in prenex normal form, this is equivalent to saying that, in the list of quantifiers, x precedes y while z does not. The formula obtained by this transformation is satisfiable if and only if the original formula is.


How Skolemization works

Skolemization works by applying a
second-order Second-order may refer to: Mathematics * Second order approximation, an approximation that includes quadratic terms * Second-order arithmetic, an axiomatization allowing quantification of sets of numbers * Second-order differential equation, a di ...
equivalence together with the definition of first-order satisfiability. The equivalence provides a way for "moving" an existential quantifier before a universal one. :\forall x \exists y R(x,y) \iff \exists f \forall x R(x,f(x)) where :f(x) is a function that maps x to y. Intuitively, the sentence "for every x there exists a y such that R(x,y)" is converted into the equivalent form "there exists a function f mapping every x into a y such that, for every x it holds R(x,f(x))". This equivalence is useful because the definition of first-order satisfiability implicitly existentially quantifies over the evaluation of function symbols. In particular, a first-order formula \Phi is satisfiable if there exists a model M and an evaluation \mu of the free variables of the formula that evaluate the formula to ''true''. The model contains the evaluation of all function symbols; therefore, Skolem functions are implicitly existentially quantified. In the example above, \forall x . R(x,f(x)) is satisfiable if and only if there exists a model M, which contains an evaluation for f, such that \forall x . R(x,f(x)) is true for some evaluation of its free variables (none in this case). This may be expressed in second order as \exists f \forall x . R(x,f(x)). By the above equivalence, this is the same as the satisfiability of \forall x \exists y . R(x,y). At the meta-level, first-order satisfiability of a formula \Phi may be written with a little abuse of notation as \exists M \exists \mu ~.~ ( M,\mu \models \Phi), where M is a model, \mu is an evaluation of the free variables, and \models means that \Phi is true in M under \mu. Since first-order models contain the evaluation of all function symbols, any Skolem function that \Phi contains is implicitly existentially quantified by \exists M. As a result, after replacing existential quantifiers over variables by existential quantifiers over functions at the front of the formula, the formula still may be treated as a first-order one by removing these existential quantifiers. This final step of treating \exists f \forall x . R(x,f(x)) as \forall x . R(x,f(x)) may be completed because functions are implicitly existentially quantified by \exists M in the definition of first-order satisfiability. Correctness of Skolemization may be shown on the example formula F_1 = \forall x_1 \dots \forall x_n \exists y R(x_1,\dots,x_n,y) as follows. This formula is satisfied by a model M if and only if, for each possible value for x_1,\dots,x_n in the domain of the model, there exists a value for y in the domain of the model that makes R(x_1,\dots,x_n,y) true. By the
axiom of choice In mathematics, the axiom of choice, or AC, is an axiom of set theory equivalent to the statement that ''a Cartesian product of a collection of non-empty sets is non-empty''. Informally put, the axiom of choice says that given any collectio ...
, there exists a function f such that y = f(x_1,\dots,x_n). As a result, the formula F_2 = \forall x_1 \dots \forall x_n R(x_1,\dots,x_n,f(x_1,\dots,x_n)) is satisfiable, because it has the model obtained by adding the evaluation of f to M. This shows that F_1 is satisfiable only if F_2 is satisfiable as well. Conversely, if F_2 is satisfiable, then there exists a model M' that satisfies it; this model includes an evaluation for the function f such that, for every value of x_1,\dots,x_n, the formula R(x_1,\dots,x_n,f(x_1,\dots,x_n)) holds. As a result, F_1 is satisfied by the same model because one may choose, for every value of x_1,\ldots,x_n, the value y=f(x_1,\dots,x_n), where f is evaluated according to M'.


Uses of Skolemization

One of the uses of Skolemization is
automated theorem proving Automated theorem proving (also known as ATP or automated deduction) is a subfield of automated reasoning and mathematical logic dealing with proving mathematical theorems by computer programs. Automated reasoning over mathematical proof was a maj ...
. For example, in the method of analytic tableaux, whenever a formula whose leading quantifier is existential occurs, the formula obtained by removing that quantifier via Skolemization may be generated. For example, if \exists x . \Phi(x,y_1,\ldots,y_n) occurs in a tableau, where x,y_1,\ldots,y_n are the free variables of \Phi(x,y_1,\ldots,y_n), then \Phi(f(y_1,\ldots,y_n),y_1,\ldots,y_n) may be added to the same branch of the tableau. This addition does not alter the satisfiability of the tableau: every model of the old formula may be extended, by adding a suitable evaluation of f, to a model of the new formula. This form of Skolemization is an improvement over "classical" Skolemization in that only variables that are free in the formula are placed in the Skolem term. This is an improvement because the semantics of tableaux may implicitly place the formula in the
scope Scope or scopes may refer to: People with the surname * Jamie Scope (born 1986), English footballer * John T. Scopes (1900–1970), central figure in the Scopes Trial regarding the teaching of evolution Arts, media, and entertainment * Cinem ...
of some universally quantified variables that are not in the formula itself; these variables are not in the Skolem term, while they would be there according to the original definition of Skolemization. Another improvement that may be used is applying the same Skolem function symbol for formulae that are identical
up to Two Mathematical object, mathematical objects ''a'' and ''b'' are called equal up to an equivalence relation ''R'' * if ''a'' and ''b'' are related by ''R'', that is, * if ''aRb'' holds, that is, * if the equivalence classes of ''a'' and ''b'' wi ...
variable renaming. Another use is in the resolution method for first-order logic, where formulas are represented as sets of
clause In language, a clause is a constituent that comprises a semantic predicand (expressed or not) and a semantic predicate. A typical clause consists of a subject and a syntactic predicate, the latter typically a verb phrase composed of a verb with ...
s understood to be universally quantified. (For an example see
drinker paradox The drinker paradox (also known as the drinker's theorem, the drinker's principle, or the drinking principle) is a theorem of classical predicate logic that can be stated as "There is someone in the pub such that, if he or she is drinking, then e ...
.)


Skolem theories

In general, if T is a
theory A theory is a rational type of abstract thinking about a phenomenon, or the results of such thinking. The process of contemplative and rational thinking is often associated with such processes as observational study or research. Theories may be s ...
and for each formula with free variables x_1, \dots, x_n, y there is a function symbol F that is provably a Skolem function for y, then T is called a Skolem theory."Sets, Models and Proofs" (3.3) by I. Moerdijk and J. van Oosten
/ref> Every Skolem theory is
model complete In model theory, a first-order theory is called model complete if every embedding of its models is an elementary embedding. Equivalently, every first-order formula is equivalent to a universal formula. This notion was introduced by Abraham Robinson ...
, i.e. every substructure of a model is an
elementary substructure In model theory, a branch of mathematical logic, two structures ''M'' and ''N'' of the same signature ''σ'' are called elementarily equivalent if they satisfy the same first-order ''σ''-sentences. If ''N'' is a substructure of ''M'', one often ...
. Given a model ''M'' of a Skolem theory ''T'', the smallest substructure containing a certain set ''A'' is called the Skolem hull of ''A''. The Skolem hull of ''A'' is an atomic
prime model In mathematics, and in particular model theory, a prime model is a model that is as simple as possible. Specifically, a model P is prime if it admits an elementary embedding into any model M to which it is elementarily equivalent (that is, into an ...
over ''A''.


History

Skolem normal form is named after the late Norwegian mathematician Thoralf Skolem.


See also

* Herbrandization, the dual of Skolemization * Predicate functor logic


Notes


References

*


External links

*
Skolemization on PlanetMath.org

Skolemization
by Hector Zenil, The Wolfram Demonstrations Project. * {{DEFAULTSORT:Skolem Normal Form Normal forms (logic) Model theory