Simple Magnetic Overunity Toy
   HOME

TheInfoList



OR:

The Simple Magnetic Overunity Toy (SMOT) is a 1985 invention by Greg Watson from Australia that claims to show " over-unity" energy — that is, it supposedly produces more
energy Energy () is the physical quantity, quantitative physical property, property that is transferred to a physical body, body or to a physical system, recognizable in the performance of Work (thermodynamics), work and in the form of heat and l ...
than it consumes, a
perpetual motion Perpetual motion is the motion of bodies that continues forever in an unperturbed system. A perpetual motion machine is a hypothetical machine that can do work indefinitely without an external energy source. This kind of machine is impossible ...
machine. It is a type of
magnet motor A magnet motor or magnetic motor is a type of perpetual motion machine, which is intended to generate a rotation by means of permanent magnets in stator and Rotor (electric), rotor without external energy supply. Such a motor is theoretically as ...
.


Overview

In the theoretical SMOT design, a
steel Steel is an alloy of iron and carbon that demonstrates improved mechanical properties compared to the pure form of iron. Due to steel's high Young's modulus, elastic modulus, Yield (engineering), yield strength, Fracture, fracture strength a ...
ball A ball is a round object (usually spherical, but sometimes ovoid) with several uses. It is used in ball games, where the play of the game follows the state of the ball as it is hit, kicked or thrown by players. Balls can also be used for s ...
is pulled up a ramp by an array of permanent
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
s. At the top of the ramp it falls, converting magnetic attraction into
kinetic energy In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion. In classical mechanics, the kinetic energy of a non-rotating object of mass ''m'' traveling at a speed ''v'' is \fracmv^2.Resnick, Rober ...
. A SMOT-like structure is shown in Emil T. Hartman's patent. Watson claims that a
mechanism Mechanism may refer to: *Mechanism (economics), a set of rules for a game designed to achieve a certain outcome **Mechanism design, the study of such mechanisms *Mechanism (engineering), rigid bodies connected by joints in order to accomplish a ...
called ''regauging'' happens that allows the cycle to be repeated without the application of outside energy.
Perpetual motion Perpetual motion is the motion of bodies that continues forever in an unperturbed system. A perpetual motion machine is a hypothetical machine that can do work indefinitely without an external energy source. This kind of machine is impossible ...
("over-unity") has not been achieved with a SMOT. The ball can be cycled from the starting point of one SMOT to the starting point of a second SMOT (and third and fourth),{{Cite web , url= http://www.lockhaven.edu/~dsimanek/museum/smot.htm , title=Testing a SMOT , first=Donald E. , last=Simanek , work=lockhaven.edu , accessdate=July 26, 2019 and by arranging multiple SMOT's in a circle the ball can be circulated along the SMOT's thus giving the illusion of overunity, but the ball can never return to its starting place without adding energy to compensate for frictional losses or for any other energy dissipated by the system.


Construction

The SMOT consists of a non-magnetic
inclined plane An inclined plane, also known as a ramp, is a flat supporting surface tilted at an angle from the vertical direction, with one end higher than the other, used as an aid for raising or lowering a load. The inclined plane is one of the six clas ...
, a series of permanent magnets, a steel ball and a non-magnetic track (e.g. aluminium). Some versions have a pair of long bar magnets in place of the series of permanent magnets. The inclined plane has a very low grade, but still enough to provide a gain in height. The track is positioned so that it is directly in the center of the inclined plane. Usually, the surface of the track is almost flush with the inclined plane's surface. The two permanent magnets are long bar magnets, polarized with their poles being at the long side, that are placed almost parallel to the track, but the poles nearest to the top of the inclined plane are closer to the track than they are at the bottom. The ball moves up the track because the magnetic field is stronger when the magnets are closer to the steel ball and each other, and since the net force is towards the top of the ramp, the motion of the ball is also that direction. This is why it is imperative that the magnets are constantly getting closer to the ball, in order to create a net force upwards. The track serves to keep the ball away from the magnets. If the track is not constructed carefully a slight imbalance can send the steel ball off the track into one of the magnets.


Analysis of operation

At the starting point, the ball has the
potential energy In physics, potential energy is the energy of an object or system due to the body's position relative to other objects, or the configuration of its particles. The energy is equal to the work done against any restoring forces, such as gravity ...
given it by being put there under the forces of the magnets. When the ball is released, the potential energy is converted to kinetic energy as the ball rolls up the track and drops off the top. The sum of kinetic energy and potential energy is always constant (minus energy lost due to friction). The ball never has more energy than it did when first put into position. The
magnetostatic Magnetostatics is the study of magnetic fields in systems where the currents are steady (not changing with time). It is the magnetic analogue of electrostatics, where the charges are stationary. The magnetization need not be static; the equat ...
field produced by any arrangement of stationary permanent magnets is a
conservative field In vector calculus, a conservative vector field is a vector field that is the gradient of some function. A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not chang ...
of the
magnetic scalar potential Magnetic scalar potential, ''ψ'', is a quantity in classical electromagnetism analogous to electric potential. It is used to specify the magnetic H-field in cases when there are no free currents, in a manner analogous to using the electric ...
. This means any magnetic object which moves in a closed-loop path in the field, like the ball in this device, gains no energy from the field, and in the absence of friction ends with the same total energy (kinetic plus potential) it started with. Since any moving object is also subject to friction forces, which dissipate the kinetic energy as it moves, the ball will always end a cycle with less energy than it started with, and will eventually stop moving.


References

1985 introductions Perpetual motion