HOME

TheInfoList



OR:

A silicon–oxygen bond ( bond) is a
chemical bond A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing o ...
between
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic ...
and
oxygen Oxygen is the chemical element with the symbol O and atomic number 8. It is a member of the chalcogen group in the periodic table, a highly reactive nonmetal, and an oxidizing agent that readily forms oxides with most elements as we ...
atoms that can be found in many
inorganic In chemistry, an inorganic compound is typically a chemical compound that lacks carbon–hydrogen bonds, that is, a compound that is not an organic compound. The study of inorganic compounds is a subfield of chemistry known as ''inorganic chemis ...
and
organic compound In chemistry, organic compounds are generally any chemical compounds that contain carbon- hydrogen or carbon-carbon bonds. Due to carbon's ability to catenate (form chains with other carbon atoms), millions of organic compounds are known. Th ...
s. In a silicon–oxygen bond,
electron The electron (, or in nuclear reactions) is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary partic ...
s are shared unequally between the two
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas ...
s, with oxygen taking the larger share due to its greater
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
. This polarisation means Si–O bonds show characteristics of both
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
and
ionic bond Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compoun ...
s. Compounds containing silicon–oxygen bonds include materials of major geological and industrial significance such as
silica Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is o ...
,
silicate minerals Silicate minerals are rock-forming minerals made up of silicate groups. They are the largest and most important class of minerals and make up approximately 90 percent of Earth's crust. In mineralogy, silica (silicon dioxide, ) is usually cons ...
and silicone polymers like
polydimethylsiloxane Polydimethylsiloxane (PDMS), also known as dimethylpolysiloxane or dimethicone, belongs to a group of polymeric organosilicon compounds that are commonly referred to as silicones. PDMS is the most widely used silicon-based organic polymer, as it ...
.


Bond polarity, length and strength

On the Pauling electronegativity scale, silicon has an
electronegativity Electronegativity, symbolized as , is the tendency for an atom of a given chemical element to attract shared electrons (or electron density) when forming a chemical bond. An atom's electronegativity is affected by both its atomic number and the ...
of 1.90 and oxygen 3.44. The electronegativity difference between the elements is therefore 1.54. Because of this moderately large difference in electronegativities, the bond is polar but not fully ionic. Carbon has an electronegativity of 2.55 so carbon–oxygen bonds have an electronegativity difference of 0.89 and are less polar than silicon–oxygen bonds. Silicon–oxygen bonds are therefore
covalent A covalent bond is a chemical bond that involves the sharing of electrons to form electron pairs between atoms. These electron pairs are known as shared pairs or bonding pairs. The stable balance of attractive and repulsive forces between atom ...
and polar, with a partial positive charge on silicon and a partial negative charge on oxygen: Siδ+—Oδ−. Silicon–oxygen
single bond In chemistry, a single bond is a chemical bond between two atoms involving two valence electrons. That is, the atoms share one pair of electrons where the bond forms. Therefore, a single bond is a type of covalent bond. When shared, each of ...
s are longer (1.6 vs 1.4 Å) but stronger (452 vs. about 360 kJ mol−1) than carbon–oxygen single bonds. However, silicon–oxygen
double bond In chemistry, a double bond is a covalent bond between two atoms involving four bonding electrons as opposed to two in a single bond. Double bonds occur most commonly between two carbon atoms, for example in alkenes. Many double bonds exist betw ...
s are weaker than carbon–oxygen double bonds (590 vs. 715 kJ mol−1) due to a better overlap of p orbitals forming a stronger
pi bond In chemistry, pi bonds (Ï€ bonds) are covalent chemical bonds, in each of which two lobes of an orbital on one atom overlap with two lobes of an orbital on another atom, and in which this overlap occurs laterally. Each of these atomic orbita ...
in the latter. This is an example of the double bond rule. For these reasons,
carbon dioxide Carbon dioxide ( chemical formula ) is a chemical compound made up of molecules that each have one carbon atom covalently double bonded to two oxygen atoms. It is found in the gas state at room temperature. In the air, carbon dioxide is t ...
is a molecular gas containing two C=O double bonds per carbon atom whereas
silicon dioxide Silicon dioxide, also known as silica, is an oxide of silicon with the chemical formula , most commonly found in nature as quartz and in various living organisms. In many parts of the world, silica is the major constituent of sand. Silica is one ...
is a polymeric solid containing four Si–O single bonds per silicon atom; molecular SiO2 containing two Si=O double bonds would polymerise. Other compounds containing Si=O double bonds are normally very reactive and unstable with respect to polymerisation or
oligomerization In chemistry and biochemistry, an oligomer () is a molecule that consists of a few repeating units which could be derived, actually or conceptually, from smaller molecules, monomers.Quote: ''Oligomer molecule: A molecule of intermediate relati ...
.
Silanones A silanone in chemistry is the silicon analogue of a ketone. The general description for this class of organic compounds is R1R2Si=O, with silicon connected to a terminal oxygen atom via a double bond and also with two organic residues (R). Si ...
oligomerise to
siloxane A siloxane is a functional group in organosilicon chemistry with the Si−O−Si linkage. The parent siloxanes include the oligomeric and polymeric hydrides with the formulae H(OSiH2)''n''OH and (OSiH2)n. Siloxanes also include branched compound ...
s unless they are stabilised, for example by coordination to a metal centre, coordination to Lewis acids or bases, or by
steric shielding Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape ( conformation) and reactivity of ions ...
.


Bond angles

Disiloxane groups, Si–O–Si, tend to have larger
bond angle Bond or bonds may refer to: Common meanings * Bond (finance), a type of debt security * Bail bond, a commercial third-party guarantor of surety bonds in the United States * Chemical bond, the attraction of atoms, ions or molecules to form chemi ...
s than their carbon counterparts, C–O–C. The Si–O–Si angle ranges from about 130–180°, whereas the C–O–C angle in
ether In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula , where R and R′ represent the alkyl or aryl groups. Ethers can again b ...
s is typically 107–113°. Si–O–C groups are intermediate, tending to have bond angles smaller than Si–O–Si but larger than C–O–C. The main reasons are hyperconjugation (donation from an oxygen p orbital to an Si–R σ*
sigma Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used ...
antibonding molecular orbital In chemical bonding theory, an antibonding orbital is a type of molecular orbital that weakens the chemical bond between two atoms and helps to raise the energy of the molecule relative to the separated atoms. Such an orbital has one or more no ...
, for example) and ionic effects (such as electrostatic repulsion between the two neighbouring partially positive silicon atoms). Recent calculations suggest π backbonding from an oxygen 2p orbital to a silicon 3d orbital makes only a minor contribution to bonding as the Si 3d orbital is too high in energy. The Si–O–Si angle is 144° in α-quartz, 155° in β-quartz, 147° in α-cristobalite and (153±20)° in
vitreous silica Fused quartz, fused silica or quartz glass is a glass consisting of almost pure silica (silicon dioxide, SiO2) in amorphous (non- crystalline) form. This differs from all other commercial glasses in which other ingredients are added which ch ...
. It is 180° in coesite (another polymorph of SiO2), in Ph3Si–O–SiPh3, and in the 3Si–O–SiO3sup>6− ion in thortveitite, Sc2Si2O7. It increases progressively from 133° to 180° in Ln2Si2O7 as the size and coordination number of the lanthanide decreases from neodymium to lutetium. It is 150° in
hemimorphite Hemimorphite is the chemical compound Zn4( Si2O7)( OH)2 ·H2O, a component of mineral calamine. It is a silicate mineral which, together with smithsonite (ZnCO3), has been historically mined from the upper parts of zinc and lead ores. Both c ...
and 134° in
lithium metasilicate Lithium metasilicate is an ionic compound with the formula Li2SiO3 Preparation Lithium metasilicate is prepared by the reaction of lithium carbonate and silicon dioxide at temperatures between 515 and 565 Â°C. Applications The melting of li ...
and
sodium metasilicate Sodium metasilicate is the chemical substance with formula , which is the main component of commercial sodium silicate solutions. It is an ionic compound consisting of sodium cations and the polymeric metasilicate anions €“–sub>''n''. It is ...
.


Coordination number

In silicate minerals, silicon often forms single bonds to four oxygen atoms in a
tetrahedral molecular geometry In a tetrahedral molecular geometry, a central atom is located at the center with four substituents that are located at the corners of a tetrahedron. The bond angles are cos−1(−) = 109.4712206...° ≈ 109.5° when all four substituents are ...
, forming a
silicon–oxygen tetrahedron In chemistry, a silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is al ...
. At high pressures, silicon can increase its
coordination number In chemistry, crystallography, and materials science, the coordination number, also called ligancy, of a central atom in a molecule or crystal is the number of atoms, molecules or ions bonded to it. The ion/molecule/atom surrounding the central i ...
to six, as in stishovite.


See also

*
Organosilicon compound Organosilicon compounds are organometallic compounds containing carbon–silicon bonds. Organosilicon chemistry is the corresponding science of their preparation and properties. Most organosilicon compounds are similar to the ordinary organic co ...
*
Carbon–hydrogen bond In chemistry, the carbon-hydrogen bond ( bond) is a chemical bond between carbon and hydrogen atoms that can be found in many organic compounds. This bond is a covalent, single bond, meaning that carbon shares its outer valence electrons with u ...
*
Carbon–carbon bond A carbon–carbon bond is a covalent bond between two carbon atoms. The most common form is the single bond: a bond composed of two electrons, one from each of the two atoms. The carbon–carbon single bond is a sigma bond and is formed be ...
*
Carbon–fluorine bond The carbon–fluorine bond is a polar covalent bond between carbon and fluorine that is a component of all organofluorine compounds. It is one of the strongest single bonds in chemistry (after the B–F single bond, Si–F single bond, and H– ...
* Bonding in solids


References

{{DEFAULTSORT:Silicon-oxygen bond Chemical bonding