In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Siegel upper half-space of degree ''g'' (or genus ''g'') (also called the Siegel upper half-plane) is the set of ''g'' Ă— ''g''
symmetric matrices
In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally,
Because equal matrices have equal dimensions, only square matrices can be symmetric.
The entries of a symmetric matrix are symmetric with re ...
over the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
s whose
imaginary part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
is
positive definite In mathematics, positive definiteness is a property of any object to which a bilinear form or a sesquilinear form may be naturally associated, which is positive-definite. See, in particular:
* Positive-definite bilinear form
* Positive-definite f ...
. It was introduced by . It is the
symmetric space
In mathematics, a symmetric space is a Riemannian manifold (or more generally, a pseudo-Riemannian manifold) whose group of symmetries contains an inversion symmetry about every point. This can be studied with the tools of Riemannian geometry, l ...
associated to the
symplectic group
In mathematics, the name symplectic group can refer to two different, but closely related, collections of mathematical groups, denoted and for positive integer ''n'' and field F (usually C or R). The latter is called the compact symplectic grou ...
.
The Siegel upper half-space has properties as a
complex manifold
In differential geometry and complex geometry, a complex manifold is a manifold with an atlas of charts to the open unit disc in \mathbb^n, such that the transition maps are holomorphic.
The term complex manifold is variously used to mean a com ...
that generalize the properties of the
upper half-plane
In mathematics, the upper half-plane, \,\mathcal\,, is the set of points in the Cartesian plane with > 0.
Complex plane
Mathematicians sometimes identify the Cartesian plane with the complex plane, and then the upper half-plane corresponds to t ...
, which is the Siegel upper half-space in the special case ''g=1''. The group of automorphisms preserving the complex structure of the manifold is isomorphic to the symplectic group . Just as the
two-dimensional hyperbolic metric is the unique (up to scaling) metric on the upper half-plane whose isometry group is the complex automorphism group = , the Siegel upper half-space has only one metric up to scaling whose isometry group is . Writing a generic matrix ''Z'' in the Siegel upper half-space in terms of its real and imaginary parts as ''Z = X + iY'', all metrics with isometry group are proportional to
:
The Siegel upper half-plane can be identified with the set of tame almost complex structures compatible with a symplectic structure
, on the underlying
dimensional real vector space
, i.e. the set of
such that
and
for all vectors
[Bowman]
See also
*
Siegel domain In mathematics, a Siegel domain or Piatetski-Shapiro domain is a special open subset of complex affine space generalizing the Siegel upper half plane studied by . They were introduced by in his study of bounded homogeneous domains.
Definitions
A ...
, a generalization of the Siegel upper half space
*
Siegel modular form
In mathematics, Siegel modular forms are a major type of automorphic form. These generalize conventional ''elliptic'' modular forms which are closely related to elliptic curves. The complex manifolds constructed in the theory of Siegel modular form ...
, a type of automorphic form defined on the Siegel upper half-space
*
Siegel modular variety
In mathematics, a Siegel modular variety or Siegel moduli space is an algebraic variety that parametrizes certain types of abelian varieties of a fixed dimension. More precisely, Siegel modular varieties are the moduli spaces of principally pola ...
, a moduli space constructed as a quotient of the Siegel upper half-space
*
Moduli of abelian varieties Abelian varieties are a natural generalization of elliptic curves, including algebraic tori in higher dimensions. Just as elliptic curves have a natural moduli space \mathcal_ over characteristic 0 constructed as a quotient of the upper-half plane ...
References
*.
*
*
*
Complex analysis
Automorphic forms
Differential geometry
1939 introductions
{{differential-geometry-stub