In
algebra
Algebra () is one of the areas of mathematics, broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathem ...
, a septic equation is an
equation of the form
:
where .
A septic function is a
function of the form
:
where . In other words, it is a
polynomial
In mathematics, a polynomial is an expression consisting of indeterminates (also called variables) and coefficients, that involves only the operations of addition, subtraction, multiplication, and positive-integer powers of variables. An ex ...
of
degree
Degree may refer to:
As a unit of measurement
* Degree (angle), a unit of angle measurement
** Degree of geographical latitude
** Degree of geographical longitude
* Degree symbol (°), a notation used in science, engineering, and mathemati ...
seven. If , then ''f'' is a
sextic function (),
quintic function (), etc.
The equation may be obtained from the function by setting .
The ''coefficients'' may be either
integers
An integer is the number zero (), a positive natural number (, , , etc.) or a negative integer with a minus sign ( −1, −2, −3, etc.). The negative numbers are the additive inverses of the corresponding positive numbers. In the language ...
,
rational number
In mathematics, a rational number is a number that can be expressed as the quotient or fraction of two integers, a numerator and a non-zero denominator . For example, is a rational number, as is every integer (e.g. ). The set of all ra ...
s,
real number
In mathematics, a real number is a number that can be used to measurement, measure a ''continuous'' one-dimensional quantity such as a distance, time, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small var ...
s,
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s or, more generally, members of any
field.
Because they have an odd degree, septic functions appear similar to
quintic or
cubic function
In mathematics, a cubic function is a function of the form f(x)=ax^3+bx^2+cx+d
where the coefficients , , , and are complex numbers, and the variable takes real values, and a\neq 0. In other words, it is both a polynomial function of degre ...
when graphed, except they may possess additional
local maxima and local minima (up to three maxima and three minima). The
derivative
In mathematics, the derivative of a function of a real variable measures the sensitivity to change of the function value (output value) with respect to a change in its argument (input value). Derivatives are a fundamental tool of calculus. ...
of a septic function is a
sextic function.
Solvable septics
Some seventh degree equations can be solved by factorizing into
radicals, but other septics cannot.
Évariste Galois
Évariste Galois (; ; 25 October 1811 – 31 May 1832) was a French mathematician and political activist. While still in his teens, he was able to determine a necessary and sufficient condition for a polynomial to be solvable by radicals, ...
developed techniques for determining whether a given equation could be solved by radicals which gave rise to the field of
Galois theory
In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory t ...
. To give an example of an irreducible but solvable septic, one can generalize the solvable
de Moivre
Abraham de Moivre FRS (; 26 May 166727 November 1754) was a French mathematician known for de Moivre's formula, a formula that links complex numbers and trigonometry, and for his work on the normal distribution and probability theory.
He ...
quintic to get,
:
,
where the auxiliary equation is
:
.
This means that the septic is obtained by eliminating and between , and .
It follows that the septic's seven roots are given by
: