Semiparametric Regression
   HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of data. In applying statistics to a s ...
, a semiparametric model is a statistical model that has parametric and nonparametric components. A statistical model is a parameterized family of distributions: \ indexed by a parameter \theta. * A parametric model is a model in which the indexing parameter \theta is a vector in k-dimensional
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are ''Euclidean spaces ...
, for some nonnegative integer k.. Thus, \theta is finite-dimensional, and \Theta \subseteq \mathbb^k. * With a nonparametric model, the set of possible values of the parameter \theta is a subset of some space V, which is not necessarily finite-dimensional. For example, we might consider the set of all distributions with mean 0. Such spaces are vector spaces with topological structure, but may not be finite-dimensional as vector spaces. Thus, \Theta \subseteq V for some possibly infinite-dimensional space V. * With a semiparametric model, the parameter has both a finite-dimensional component and an infinite-dimensional component (often a real-valued function defined on the real line). Thus, \Theta \subseteq \mathbb^k \times V, where V is an infinite-dimensional space. It may appear at first that semiparametric models include nonparametric models, since they have an infinite-dimensional as well as a finite-dimensional component. However, a semiparametric model is considered to be "smaller" than a completely nonparametric model because we are often interested only in the finite-dimensional component of \theta. That is, the infinite-dimensional component is regarded as a nuisance parameter.. In nonparametric models, by contrast, the primary interest is in estimating the infinite-dimensional parameter. Thus the estimation task is statistically harder in nonparametric models. These models often use smoothing or kernels.


Example

A well-known example of a semiparametric model is the Cox proportional hazards model. If we are interested in studying the time T to an event such as death due to cancer or failure of a light bulb, the Cox model specifies the following distribution function for T: : F(t) = 1 - \exp\left(-\int_0^t \lambda_0(u) e^ du\right), where x is the covariate vector, and \beta and \lambda_0(u) are unknown parameters. \theta = (\beta, \lambda_0(u)). Here \beta is finite-dimensional and is of interest; \lambda_0(u) is an unknown non-negative function of time (known as the baseline hazard function) and is often a nuisance parameter. The set of possible candidates for \lambda_0(u) is infinite-dimensional.


See also

* Semiparametric regression * Statistical model * Generalized method of moments


Notes


References

* * * *{{citation , first1= Anastasios A. , last1= Tsiatis , title= Semiparametric Theory and Missing Data , year= 2006 , publisher= Springer *Begun, Janet M.; Hall, W. J.; Huang, Wei-Min; Wellner, Jon A. (1983), "Information and asymptotic efficiency in parametric--nonparametric models", Annals of Statistics, 11 (1983), no. 2, 432--452 Mathematical and quantitative methods (economics)