HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, a normed vector space or normed space is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
over the
real Real may refer to: Currencies * Brazilian real (R$) * Central American Republic real * Mexican real * Portuguese real * Spanish real * Spanish colonial real Music Albums * ''Real'' (L'Arc-en-Ciel album) (2000) * ''Real'' (Bright album) (2010) ...
or
complex Complex commonly refers to: * Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe ** Complex system, a system composed of many components which may interact with each ...
numbers, on which a
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envir ...
is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" in the real (physical) world. A norm is a
real-valued function In mathematics, a real-valued function is a function whose values are real numbers. In other words, it is a function that assigns a real number to each member of its domain. Real-valued functions of a real variable (commonly called ''real fun ...
defined on the vector space that is commonly denoted x\mapsto \, x\, , and has the following properties: #It is nonnegative, meaning that \, x\, \geq 0 for every vector x. #It is positive on nonzero vectors, that is, \, x\, = 0 \text x = 0. # For every vector x, and every scalar \alpha, \, \alpha x\, = , \alpha, \, \, x\, . # The
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
holds; that is, for every vectors x and y, \, x+y\, \leq \, x\, + \, y\, . A norm induces a
distance Distance is a numerical or occasionally qualitative measurement of how far apart objects or points are. In physics or everyday usage, distance may refer to a physical length or an estimation based on other criteria (e.g. "two counties over"). ...
, called its , by the formula d(x,y) = \, y-x\, . which makes any normed vector space into a
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
and a
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
. If this metric space is
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
then the normed space is a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
. Every normed vector space can be "uniquely extended" to a Banach space, which makes normed spaces intimately related to Banach spaces. Every Banach space is a normed space but converse is not true. For example, the set of the
finite sequence In mathematics, a sequence is an enumerated collection of mathematical object, objects in which repetitions are allowed and order theory, order matters. Like a Set (mathematics), set, it contains Element (mathematics), members (also called ''eleme ...
s of real numbers can be normed with the
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
, but it is not complete for this norm. An
inner product space In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often den ...
is a normed vector space whose norm is the square root of the inner product of a vector and itself. The
Euclidean norm Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
of a
Euclidean vector space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics there are Euclidean s ...
is a special case that allows defining
Euclidean distance In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefor ...
by the formula d(A, B) = \, \overrightarrow\, . The study of normed spaces and Banach spaces is a fundamental part of
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Defini ...
, which is a major subfield of mathematics.


Definition

A normed vector space is a
vector space In mathematics and physics, a vector space (also called a linear space) is a set whose elements, often called ''vectors'', may be added together and multiplied ("scaled") by numbers called '' scalars''. Scalars are often real numbers, but can ...
equipped with a
norm Naturally occurring radioactive materials (NORM) and technologically enhanced naturally occurring radioactive materials (TENORM) consist of materials, usually industrial wastes or by-products enriched with radioactive elements found in the envir ...
. A is a vector space equipped with a
seminorm In mathematics, particularly in functional analysis, a seminorm is a vector space norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and ...
. A useful variation of the triangle inequality is \, x-y\, \geq , \, x\, - \, y\, , for any vectors x and y. This also shows that a vector norm is a (uniformly)
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
. Property 3 depends on a choice of norm , \alpha, on the field of scalars. When the scalar field is \R (or more generally a subset of \Complex), this is usually taken to be the ordinary
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), an ...
, but other choices are possible. For example, for a vector space over \Q one could take , \alpha, to be the p-adic absolute value.


Topological structure

If (V, \, \,\cdot\,\, ) is a normed vector space, the norm \, \,\cdot\,\, induces a
metric Metric or metrical may refer to: * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics In mathema ...
(a notion of ''distance'') and therefore a
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
on V. This metric is defined in the natural way: the distance between two vectors \mathbf and \mathbf is given by \, \mathbf - \mathbf\, . This topology is precisely the weakest topology which makes \, \,\cdot\,\, continuous and which is compatible with the linear structure of V in the following sense: #The vector addition \,+\, : V \times V \to V is jointly continuous with respect to this topology. This follows directly from the
triangle inequality In mathematics, the triangle inequality states that for any triangle, the sum of the lengths of any two sides must be greater than or equal to the length of the remaining side. This statement permits the inclusion of degenerate triangles, but ...
. #The scalar multiplication \,\cdot\, : \mathbb \times V \to V, where \mathbb is the underlying scalar field of V, is jointly continuous. This follows from the triangle inequality and homogeneity of the norm. Similarly, for any seminormed vector space we can define the distance between two vectors \mathbf and \mathbf as \, \mathbf - \mathbf\, . This turns the seminormed space into a
pseudometric space In mathematics, a pseudometric space is a generalization of a metric space in which the distance between two distinct points can be zero. Pseudometric spaces were introduced by Đuro Kurepa in 1934. In the same way as every normed space is a metric ...
(notice this is weaker than a metric) and allows the definition of notions such as continuity and
convergence Convergence may refer to: Arts and media Literature *''Convergence'' (book series), edited by Ruth Nanda Anshen * "Convergence" (comics), two separate story lines published by DC Comics: **A four-part crossover storyline that united the four Wei ...
. To put it more abstractly every seminormed vector space is a
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
and thus carries a
topological structure In mathematics, a topological space is, roughly speaking, a geometrical space in which closeness is defined but cannot necessarily be measured by a numeric distance. More specifically, a topological space is a set whose elements are called point ...
which is induced by the semi-norm. Of special interest are
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
normed spaces, which are known as . Every normed vector space V sits as a dense subspace inside some Banach space; this Banach space is essentially uniquely defined by V and is called the of V. Two norms on the same vector space are called if they define the same
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
. On a finite-dimensional vector space, all norms are equivalent but this is not true for infinite dimensional vector spaces. All norms on a finite-dimensional vector space are equivalent from a topological viewpoint as they induce the same topology (although the resulting metric spaces need not be the same)., Theorem 1.3.6 And since any Euclidean space is complete, we can thus conclude that all finite-dimensional normed vector spaces are Banach spaces. A normed vector space V is
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which ev ...
if and only if the unit ball B = \ is
compact Compact as used in politics may refer broadly to a pact or treaty; in more specific cases it may refer to: * Interstate compact * Blood compact, an ancient ritual of the Philippines * Compact government, a type of colonial rule utilized in British ...
, which is the case if and only if V is finite-dimensional; this is a consequence of
Riesz's lemma Riesz's lemma (after Frigyes Riesz) is a lemma in functional analysis. It specifies (often easy to check) conditions that guarantee that a subspace in a normed vector space is dense. The lemma may also be called the Riesz lemma or Riesz inequal ...
. (In fact, a more general result is true: a topological vector space is locally compact if and only if it is finite-dimensional. The point here is that we don't assume the topology comes from a norm.) The topology of a seminormed vector space has many nice properties. Given a
neighbourhood system In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter \mathcal(x) for a point x in a topological space is the collection of all neighbourhoods of x. Definitions Neighbour ...
\mathcal(0) around 0 we can construct all other neighbourhood systems as \mathcal(x) = x + \mathcal(0) := \ with x + N := \. Moreover, there exists a
neighbourhood basis In topology and related areas of mathematics, the neighbourhood system, complete system of neighbourhoods, or neighbourhood filter \mathcal(x) for a point x in a topological space is the collection of all neighbourhoods of x. Definitions Neighbour ...
for the origin consisting of absorbing and
convex set In geometry, a subset of a Euclidean space, or more generally an affine space over the reals, is convex if, given any two points in the subset, the subset contains the whole line segment that joins them. Equivalently, a convex set or a convex r ...
s. As this property is very useful in
functional analysis Functional analysis is a branch of mathematical analysis, the core of which is formed by the study of vector spaces endowed with some kind of limit-related structure (e.g. Inner product space#Definition, inner product, Norm (mathematics)#Defini ...
, generalizations of normed vector spaces with this property are studied under the name
locally convex space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
s. A norm (or
seminorm In mathematics, particularly in functional analysis, a seminorm is a vector space norm that need not be positive definite. Seminorms are intimately connected with convex sets: every seminorm is the Minkowski functional of some absorbing disk and ...
) \, \cdot\, on a topological vector space (X, \tau) is continuous if and only if the topology \tau_ that \, \cdot\, induces on X is coarser than \tau (meaning, \tau_ \subseteq \tau), which happens if and only if there exists some open ball B in (X, \, \cdot\, ) (such as maybe \ for example) that is open in (X, \tau) (said different, such that B \in \tau).


Normable spaces

A
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
(X, \tau) is called normable if there exists a norm \, \cdot \, on X such that the canonical metric (x, y) \mapsto \, y-x\, induces the topology \tau on X. The following theorem is due to
Kolmogorov Andrey Nikolaevich Kolmogorov ( rus, Андре́й Никола́евич Колмого́ров, p=ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf, a=Ru-Andrey Nikolaevich Kolmogorov.ogg, 25 April 1903 – 20 October 1987) was a Sovi ...
:
Kolmogorov's normability criterion In mathematics, Kolmogorov's normability criterion is a theorem that provides a necessary and sufficient condition for a topological vector space to be ; that is, for the existence of a norm on the space that generates the given topology. The nor ...
: A Hausdorff topological vector space is normable if and only if there exists a convex,
von Neumann bounded In functional analysis and related areas of mathematics, a set in a topological vector space is called bounded or von Neumann bounded, if every neighborhood of the zero vector can be ''inflated'' to include the set. A set that is not bounded i ...
neighborhood of 0 \in X. A product of a family of normable spaces is normable if and only if only finitely many of the spaces are non-trivial (that is, \neq \). Furthermore, the quotient of a normable space X by a closed vector subspace C is normable, and if in addition X's topology is given by a norm \, \,\cdot,\, then the map X/C \to \R given by x + C \mapsto \inf_ \, x + c\, is a well defined norm on X / C that induces the
quotient topology In topology and related areas of mathematics, the quotient space of a topological space under a given equivalence relation is a new topological space constructed by endowing the quotient set of the original topological space with the quotient t ...
on X / C. If X is a Hausdorff
locally convex In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological ve ...
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
then the following are equivalent: # X is normable. # X has a bounded neighborhood of the origin. # the
strong dual space In functional analysis and related areas of mathematics, the strong dual space of a topological vector space (TVS) X is the continuous dual space X^ of X equipped with the strong (dual) topology or the topology of uniform convergence on bounded sub ...
X^_b of X is normable. # the strong dual space X^_b of X is
metrizable In topology and related areas of mathematics, a metrizable space is a topological space that is homeomorphic to a metric space. That is, a topological space (X, \mathcal) is said to be metrizable if there is a metric d : X \times X \to , \infty) ...
. Furthermore, X is finite dimensional if and only if X^_ is normable (here X^_ denotes X^ endowed with the
weak-* topology In mathematics, weak topology is an alternative term for certain initial topologies, often on topological vector spaces or spaces of linear operators, for instance on a Hilbert space. The term is most commonly used for the initial topology of a ...
). The topology \tau of the
Fréchet space In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces (normed vector spaces that are complete with respect to the ...
C^(K), as defined in the article on
spaces of test functions and distributions In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued ( ...
, is defined by a countable family of norms but it is a normable space because there does not exist any norm \, \cdot\, on C^(K) such that the topology that this norm induces is equal to \tau. Even if a metrizable topological vector space has a topology that is defined by a family of norms, then it may nevertheless still fail to be
normable space In mathematics, a normed vector space or normed space is a vector space over the real or complex numbers, on which a norm is defined. A norm is the formalization and the generalization to real vector spaces of the intuitive notion of "length" ...
(meaning that its topology can not be defined by any norm). An example of such a space is the
Fréchet space In functional analysis and related areas of mathematics, Fréchet spaces, named after Maurice Fréchet, are special topological vector spaces. They are generalizations of Banach spaces (normed vector spaces that are complete with respect to the ...
C^(K), whose definition can be found in the article on
spaces of test functions and distributions In mathematical analysis, the spaces of test functions and distributions are topological vector spaces (TVSs) that are used in the definition and application of distributions. Test functions are usually infinitely differentiable complex-valued ( ...
, because its topology \tau is defined by a countable family of norms but it is a normable space because there does not exist any norm \, \cdot\, on C^(K) such that the topology this norm induces is equal to \tau. In fact, the topology of a
locally convex space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
X can be a defined by a family of on X if and only if there exists continuous norm on X.


Linear maps and dual spaces

The most important maps between two normed vector spaces are the
continuous Continuity or continuous may refer to: Mathematics * Continuity (mathematics), the opposing concept to discreteness; common examples include ** Continuous probability distribution or random variable in probability and statistics ** Continuous ...
linear maps In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that pre ...
. Together with these maps, normed vector spaces form a
category Category, plural categories, may refer to: Philosophy and general uses * Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) *Categories (Peirce) * ...
. The norm is a continuous function on its vector space. All linear maps between finite dimensional vector spaces are also continuous. An ''isometry'' between two normed vector spaces is a linear map f which preserves the norm (meaning \, f(\mathbf)\, = \, \mathbf\, for all vectors \mathbf). Isometries are always continuous and
injective In mathematics, an injective function (also known as injection, or one-to-one function) is a function that maps distinct elements of its domain to distinct elements; that is, implies . (Equivalently, implies in the equivalent contrapositiv ...
. A
surjective In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of i ...
isometry between the normed vector spaces V and W is called an ''isometric isomorphism'', and V and W are called ''isometrically isomorphic''. Isometrically isomorphic normed vector spaces are identical for all practical purposes. When speaking of normed vector spaces, we augment the notion of
dual space In mathematics, any vector space ''V'' has a corresponding dual vector space (or just dual space for short) consisting of all linear forms on ''V'', together with the vector space structure of pointwise addition and scalar multiplication by const ...
to take the norm into account. The dual V^ of a normed vector space V is the space of all ''continuous'' linear maps from V to the base field (the complexes or the reals) — such linear maps are called "functionals". The norm of a functional \varphi is defined as the
supremum In mathematics, the infimum (abbreviated inf; plural infima) of a subset S of a partially ordered set P is a greatest element in P that is less than or equal to each element of S, if such an element exists. Consequently, the term ''greatest l ...
of , \varphi(\mathbf), where \mathbf ranges over all unit vectors (that is, vectors of norm 1) in V. This turns V^ into a normed vector space. An important theorem about continuous linear functionals on normed vector spaces is the
Hahn–Banach theorem The Hahn–Banach theorem is a central tool in functional analysis. It allows the extension of bounded linear functionals defined on a subspace of some vector space to the whole space, and it also shows that there are "enough" continuous linear f ...
.


Normed spaces as quotient spaces of seminormed spaces

The definition of many normed spaces (in particular,
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
s) involves a seminorm defined on a vector space and then the normed space is defined as the quotient space by the subspace of elements of seminorm zero. For instance, with the L^p spaces, the function defined by \, f\, _p = \left( \int , f(x), ^p \;dx \right)^ is a seminorm on the vector space of all functions on which the
Lebesgue integral In mathematics, the integral of a non-negative function of a single variable can be regarded, in the simplest case, as the area between the graph of that function and the -axis. The Lebesgue integral, named after French mathematician Henri Lebe ...
on the right hand side is defined and finite. However, the seminorm is equal to zero for any function supported on a set of
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wit ...
zero. These functions form a subspace which we "quotient out", making them equivalent to the zero function.


Finite product spaces

Given n seminormed spaces \left(X_i, q_i\right) with seminorms q_i : X_i \to \R, denote the
product space In topology and related areas of mathematics, a product space is the Cartesian product of a family of topological spaces equipped with a natural topology called the product topology. This topology differs from another, perhaps more natural-seemin ...
by X := \prod_^n X_i where vector addition defined as \left(x_1,\ldots,x_n\right) + \left(y_1,\ldots,y_n\right) := \left(x_1 + y_1, \ldots, x_n + y_n\right) and scalar multiplication defined as \alpha \left(x_1,\ldots,x_n\right) := \left(\alpha x_1, \ldots, \alpha x_n\right). Define a new function q : X \to \R by q\left(x_1,\ldots,x_n\right) := \sum_^n q_i\left(x_i\right), which is a seminorm on X. The function q is a norm if and only if all q_i are norms. More generally, for each real p \geq 1 the map q : X \to \R defined by q\left(x_1,\ldots,x_n\right) := \left(\sum_^n q_i\left(x_i\right)^p\right)^ is a semi norm. For each p this defines the same topological space. A straightforward argument involving elementary linear algebra shows that the only finite-dimensional seminormed spaces are those arising as the product space of a normed space and a space with trivial seminorm. Consequently, many of the more interesting examples and applications of seminormed spaces occur for infinite-dimensional vector spaces.


See also

*
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
, normed vector spaces which are complete with respect to the metric induced by the norm * *
Finsler manifold In mathematics, particularly differential geometry, a Finsler manifold is a differentiable manifold where a (possibly asymmetric) Minkowski functional is provided on each tangent space , that enables one to define the length of any smooth curv ...
, where the length of each tangent vector is determined by a norm *
Inner product space In mathematics, an inner product space (or, rarely, a Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation called an inner product. The inner product of two vectors in the space is a scalar, often den ...
, normed vector spaces where the norm is given by an
inner product In mathematics, an inner product space (or, rarely, a Hausdorff space, Hausdorff pre-Hilbert space) is a real vector space or a complex vector space with an operation (mathematics), operation called an inner product. The inner product of two ve ...
* *
Locally convex topological vector space In functional analysis and related areas of mathematics, locally convex topological vector spaces (LCTVS) or locally convex spaces are examples of topological vector spaces (TVS) that generalize normed spaces. They can be defined as topological vec ...
– a vector space with a topology defined by convex open sets *
Space (mathematics) In mathematics, a space is a set (sometimes called a universe) with some added structure. While modern mathematics uses many types of spaces, such as Euclidean spaces, linear spaces, topological spaces, Hilbert spaces, or probability spaces, i ...
– mathematical set with some added structure *


References


Bibliography

* * * * *


External links

* {{DEFAULTSORT:Normed Vector Space