Self-assembling Peptide
   HOME

TheInfoList



OR:

Self-assembling peptides are a category of
peptide Peptides (, ) are short chains of amino acids linked by peptide bonds. Long chains of amino acids are called proteins. Chains of fewer than twenty amino acids are called oligopeptides, and include dipeptides, tripeptides, and tetrapeptides. ...
s which undergo spontaneous assembling into ordered
nanostructure A nanostructure is a structure of intermediate size between microscopic and molecular structures. Nanostructural detail is microstructure at nanoscale. In describing nanostructures, it is necessary to differentiate between the number of dimens ...
s. Originally described in 1993, these designer peptides have attracted interest in the field of nanotechnology for their potential for application in areas such as biomedical nanotechnology, tissue cell culturing,
molecular electronics Molecular electronics is the study and application of molecular building blocks for the fabrication of electronic components. It is an interdisciplinary area that spans physics, chemistry, and materials science. The unifying feature is use of mo ...
, and more. Effectively self-assembling peptides act as building blocks for a wide range of material and device applications. The essence of this technology is to replicate what nature does: to use
molecular recognition The term molecular recognition refers to the specific interaction between two or more molecules through noncovalent bonding such as hydrogen bonding, metal coordination, hydrophobic forces, van der Waals forces, π-π interactions, halogen ...
processes to form ordered assemblies of building blocks that are capable of conducting biochemical activities.


Background

Peptides are able to perform as excellent building blocks for a wide range of materials as they can be designed to combine with a range of other building blocks such as
lipids Lipids are a broad group of naturally-occurring molecules which includes fats, waxes, sterols, fat-soluble vitamins (such as vitamins A, D, E and K), monoglycerides, diglycerides, phospholipids, and others. The functions of lipids include ...
, sugars, nucleic acids, metallic nanocrystals and so on; this gives the peptides an edge over carbon nanotubes, which are another popular nanomaterial, as the carbon structure is unreactive. They also exhibit properties such as biocompatibility and molecular recognition; the latter is particularly useful as it enables specific selectivity for building ordered nanostructures. Additionally peptides have superb resistance to extreme conditions of high/low temperatures, detergents and denaturants. The ability of peptides to perform
self-assembly Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
allows them to be used as fabrication tools, which is currently and will continue to grow as a fundamental part of nanomaterials production. The self-assembling of peptides is facilitated through the molecules’ structural and chemical compatibility with each other, and the structures formed demonstrates physical and chemical stability. A great advantage of using self-assembling peptides to build nanostructures in a bottom-up approach is that specific features can be incorporated; the peptides can be modified and functionalized. This approach means that the final structures are built from the self-integration of small, simple building blocks. Essentially this approach is needed for nanoscale structure, as the top-down method of miniaturizing device using sophisticated lithography and etching techniques has reached a physical limit. Moreover, the top-down approach is applicable to mainly only silicon based technology, and is unable to be used for biological developments. The peptide structure is organized hierarchically into four levels. The primary structure of a peptide is the sequence of the
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha a ...
s on the peptide chain. Amino acids are monomer molecules that carries a carboxyl and an amine
functional group In organic chemistry, a functional group is a substituent or moiety in a molecule that causes the molecule's characteristic chemical reactions. The same functional group will undergo the same or similar chemical reactions regardless of the re ...
s; a spectrum of other chemical groups are attached to different amino acids, such as
thiols In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl grou ...
and alcohols. This facilitates the wide range of chemical interactions and therefore molecular recognitions that peptides are capable of. For designer self-assembling peptides both natural and non-natural amino acids are used. They link together in a controlled manner to form short peptides which links to form long polypeptide chains. Along these chains the alternating amine (NH) and carbonyl (CO) groups are highly polar and they readily form hydrogen bonds with each other. These hydrogen bonds binds peptide chains together to give rise to secondary structures. Stable secondary structures include the alpha-helices and beta-sheets. Unstable secondary structures are random loops, turns and coils that are formed. The secondary structure that is formed is dependent on the primary structure; different sequences of the amino acids exhibit different preferences. Secondary structures usually fold into with a variety of loops and turns into a
tertiary structure Protein tertiary structure is the three dimensional shape of a protein. The tertiary structure will have a single polypeptide chain "backbone" with one or more protein secondary structures, the protein domains. Amino acid side chains may i ...
. What differentiates the secondary structure from the tertiary structure is primarily that the latter includes
non-covalent In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The ...
interactions. The
quaternary structure Protein quaternary structure is the fourth (and highest) classification level of protein structure. Protein quaternary structure refers to the structure of proteins which are themselves composed of two or more smaller protein chains (also refe ...
is the combination of two or more different chains of polypeptide to form what is known as a protein sub-unit. The self-assembly process of the peptide chains is dynamic—reassembly occurs repeatedly in a self-healing manner. The type of interactions that occurs to reassemble peptide structures include
van der Waals force In molecular physics, the van der Waals force is a distance-dependent interaction between atoms or molecules. Unlike ionic or covalent bonds, these attractions do not result from a chemical electronic bond; they are comparatively weak and th ...
s,
ionic bond Ionic bonding is a type of chemical bonding that involves the electrostatic attraction between oppositely charged ions, or between two atoms with sharply different electronegativities, and is the primary interaction occurring in ionic compounds ...
s, hydrogen bonds and hydrophobic forces. These forces also facilitate the molecular recognition function that the peptides encompasses. These interactions works on a basis of preference dependent on energy properties and specificity. A range of different nanostructures can be formed. Nanotubes are defined as an elongated nano-object with a definite inner hole. Nanofibrils are solid on the inside, as opposed to hollow nanotubes.


Processing/Synthesis

Peptide synthesis In organic chemistry, peptide synthesis is the production of peptides, compounds where multiple amino acids are linked via amide bonds, also known as peptide bonds. Peptides are chemically synthesized by the condensation reaction of the carboxyl ...
can be easily conducted by the established method of solid-phase chemistry in grams or kilograms quantities. The d-isomer conformation can be used for peptide synthesis. Nanostructures can be made by dissolving dipeptides in 1,1,1,3,3, 3-hexafluoro-2-propanol at 100 mg/ml and then diluting it with water for a concentration of less than 2 mg/ml. Multiwall nanotubes with a diameter of 80–300 nm, made of dipeptides from the
diphenylalanine Diphenylalanine is a term that has recently been used to describe the unnatural amino acid similar to the two amino acids alanine and phenylalanine. It has been used for the synthesis of pseudopeptide analogues which are capable of inhibiting ce ...
motif of Alzheimer's
β-amyloid Amyloid beta (Aβ or Abeta) denotes peptides of 36–43 amino acids that are the main component of the amyloid plaques found in the brains of people with Alzheimer's disease. The peptides derive from the amyloid precursor protein (APP), which ...
peptide are made by this method. If a thiol is introduced into the diphenylalanine then nano-spheres can be formed instead; nanospheres of 10–100 nm diameter from a diphenylgalcine peptide can also be made this way.


Characterization

Atomic force microscopy can measure mechanical properties of nanotubes. Scanning-electron and atomic-forces microscopy is used to examine Lego peptide nanofiber structures.
Dynamic light scattering Dynamic light scattering (DLS) is a technique in physics that can be used to determine the size distribution profile of small particles in suspension or polymers in solution. In the scope of DLS, temporal fluctuations are usually analyzed using ...
studies show structures of surfactant peptides. Surfactant peptides has been studied using a quick-freeze /deep–etch sample preparation method which minimizes effects on the structure. The sample nanostructures are flash freeze at −196 °C and can be studied three-dimensionally. Transmission electron microscopy was used. Using
computer technology Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, e ...
, a
molecular model A molecular model is a physical model of an atomistic system that represents molecules and their processes. They play an important role in understanding chemistry and generating and testing hypotheses. The creation of mathematical models of molecu ...
of peptides and their interactions can be built and studied. Specific tests can be performed on certain peptides; for example a fluorescent emission test could be applied to amyloid fibrils by using the dye Thioflavin T that binds specifically to the peptide and emits blue fluorescence when excited.


Structure


Dipeptides

The simplest peptide building blocks are dipeptides. Nanotubes formed from dipeptides are the widest amongst peptide nanotubes. An example of a dipeptide that has been studied is such a peptide is one from the diphenylalanine motif of the Alzheimer's β-amyloid peptide. Dipeptides have also been shown to self assemble into hydrogels, another form of nanostructures, when connected to the protecting group, Fluorenylmethyloxycarbonyl chloride. Experiments focusing on the dipeptide Fmoc-diphenylalaine have been conducted that have explored the mechanism in which Fmoc-diphenylalanine self assembles into hydrogels via π-π interlocked β-sheets. Phenylalanine has an aromatic ring, a crucial part of the molecule due to its high electron-density, which favors self-assembly and during self-assembly these rings stack which enables the assembly to occur.


Lego peptides / Ionic self-complementary peptides

These peptides are approximately 5 nm in size and have 16 amino acids. The class of Lego peptides has the unique characteristics of having two distinct surfaces being either hydrophobic or hydrophilic, similar to the pegs and holes of Lego blocks. The hydrophobic side promotes self-assembly in water and the hydrophilic sides has a regular arrangement of charged amino acids residues, which in turn brings about a defined pattern of ionic bonds. The arrangement of the residues can be classified according to the order of the charges; Modulus I has a charge pattern of “+-+-+-,” modulus II “++--++--“ and modulus III “+++---+++” and so on. The peptides self-assemble into nano fibers approximately 10 nm long in the presence of alkaline cations or an addition of peptide solution. The fibers forms ionic interactions with each other to form checkerboard like matrices, which develops into a scaffold hydrogel with a high water content of larger than 99.5- 99.9% and pores of 10-200 nm diameter. These hydrogels allows neurite outgrowth and therefore is can be used as scaffold for tissue engineering.


Surfactant peptides

Surfactant–like peptides which undergo self-assembly in water to form nanotubes and nanovesicles have been designed using natural lipids as a guide. This class of peptides has a hydrophilic head (with one or two charged amino acids such as aspartic and glutamic acids, or lysine or histidine acids) with a hydrophobic tail (with 4 or more hydrophobic amino acids such as alanine, valine or leucine). The peptide monomers are about 2-3 nm long and consist of seven or eight amino acids; the length of the peptide can be adjusted by adding or removing acids.Zhao, X., Design of self-assembling surfactant-like peptides and their applications. Current Opinion in Colloid & Interface Science, 2009. 14(5): p. 340-348. In water surfactant peptides undergo self assembling to form well ordered nanotubes and nanovesicles of 30–50 nm through intermolecular hydrogen bonds and the packing of the hydrophobic tails in between the residues in a manner similar to
micelle A micelle () or micella () (plural micelles or micellae, respectively) is an aggregate (or supramolecular assembly) of surfactant amphipathic lipid molecules dispersed in a liquid, forming a colloidal suspension (also known as associated coll ...
formation.
Transmission electron microscopy Transmission electron microscopy (TEM) is a microscopy technique in which a beam of electrons is transmitted through a specimen to form an image. The specimen is most often an ultrathin section less than 100 nm thick or a suspension on a g ...
examination on quick-frozen samples of surfactant peptides structures showed helical open-ended nanotubes. The samples also showed a dynamic behaviours and some vesicles “buds” out of the peptide nanotubes.


Molecular paint or carpet peptides

This class of peptides undergoes self assembling on a surface and form monolayers just few nanometers thick. This type of molecular “paint” or “carpet” peptides are able to form cell patterns, interact with or trap other molecules onto the surface. This class of peptides consists of three segments: the head is a ligand part which has functional groups attached for recognition by other molecules or
cell surface receptors Cell surface receptors (membrane receptors, transmembrane receptors) are receptors that are embedded in the plasma membrane of cells. They act in cell signaling by receiving (binding to) extracellular molecules. They are specialized integral m ...
; the middle segment is a “linker”which allows the head to interact at a distance away from the surface. The linker also controls the flexibility and the rigidity of the peptide structure. On the other end of the linker was a surface anchor where a chemical group on the peptide forms a covalent bond with a particular surface. This class of peptides has the unique property of being able to change their
molecular structure Molecular geometry is the three-dimensional arrangement of the atoms that constitute a molecule. It includes the general shape of the molecule as well as bond lengths, bond angles, torsional angles and any other geometrical parameters that deter ...
dramatically. This property is best illustrated using an example. The DAR16-IV peptide, has 16 amino acid and forms a 5 nm β-sheet structure at ambient temperatures; a swift change in structure occurs at high temperature or a change in pH and a 2.5 nm α-helix forms.


Cyclic peptides

Extensive research has been performed on nanotubes formed by stacking
cyclic peptide Cyclic peptides are polypeptide chains which contain a circular sequence of bonds. This can be through a connection between the amino and carboxyl ends of the peptide, for example in cyclosporin; a connection between the amino end and a side chai ...
s with an even number of alternating D and L amino acids. These nanotubes are the narrowest formed by peptides. The stacking occurs through intermolecular hydrogen bonding and the end product is cylindrical structures with the amino acid
side chain In organic chemistry and biochemistry, a side chain is a chemical group that is attached to a core part of the molecule called the "main chain" or backbone. The side chain is a hydrocarbon branching element of a molecule that is attached to a ...
s of the peptide defining the properties of the outer surface of the tube and the peptide backbone determining the properties of the inner surface of the tube. Polymers can also be covalently attached to the peptides in which case a polymer shell around nanotubes can be formed. By applying peptide design, the inner diameter, which is completely uniform, can be specified; the outer surface properties can also be deliberated by peptide design and therefore these cyclic nanotubes are able to form in range of different environments.


Property evaluation

– Discussion of properties (mechanical, electronic, optical, magnetic...) of the material your chosen, indicate what the major differences would be if the same material was not on the nano-scale. Nanotubes formed from dipeptides are stable under extreme conditions. Dry nanotubes do not degrade until 200 °C; nanotubes display exceptional chemical stability at a range of pH and in the presence of organic solvents. This is a marked difference from natural biological systems which are often unstable and sensitive to temperature and the chemical conditions. Indentation atomic force microscopy experiments showed that dry nanotubes on mica gives an average stiffness of 160 N/m and a high Young's modulus of 19–27 GPa. Although they are less stiff than carbon and non-carbon nanotubes, with these values these nanotubes are amongst some of the stiffest known biological materials. The mechanisms which facilitates the mechanical stiffness has been suggested to be the intermolecular hydrogen bonds and rigid aromatic side chains on the peptides. Surface properties For nanotubes, apart from those made by cyclic peptides, the surface properties of the inner and outer surface has not yet been successfully independently modified. Hence it presents a limitation that the inner and outer tube surfaces are identical. Molecular assembly mostly occurs through weak non-covalent bonds which includes: hydrogen bonds, ionic bonds, van der Waals interactions, and
hydrophobic interactions The hydrophobic effect is the observed tendency of nonpolar substances to aggregate in an aqueous solution and exclude water#Properties, water molecules. The word hydrophobic literally means "water-fearing", and it describes the Segregation in m ...
.


Self-assembling peptides versus carbon nanotubes

Carbon nanotubes (CNTs) is another type of nanomaterial which has attracted a lot of interest for its potential as being building blocks for bottom-up applications. They have excellent mechanical, electrical, and thermal properties and can be fabricated to a wide range of nanoscale diameters, making them attractive and appropriate for the developments of electronic and mechanical devices. They demonstrate metal-like properties and are able to act as remarkable conductors. However, there are several areas where peptides has advantages over CNTs. As mentioned in the background section, one advantage that peptides has over carbon as nanosize building blocks is that they have almost limitless chemical functionality compared with the very chemical interactions that carbons can perform due to their nonreactiveness. Furthermore, CNTs exhibits strong hydrophobicity which results in a tendency to clump in aqueous solutions and therefore has limited solubility; their electrical properties are also affected by humidity, and the presence of oxygen, N2O and NH3. It is also difficult for to produce CNTs with uniform properties and this pose serious drawbacks as for commercial purposes the reproducibility of precise structural properties is a key concern. Lastly, CNTs are expensive with prices in the range of hundreds of dollars per gram, rendering most applications of them commercially unviable.


Present and future applications

The appeal of designer peptides is that they are structurally simple and it is uncomplicated and affordable to produce them on a large scale.


Cell culturing

Peptide scaffolds formed from LEGO peptides has been used extensively for 3D cell culturing as they closely resemble the porosity and the structure of extra-cellular matrices. These scaffolds have also been used in cell proliferation and differentiation into desired cell types. Experimentations with rat neurons demonstrated LEGO peptides’ usefulness in cell culturing. Rat neurons that were attached to the peptides projected functional axons that followed the contour as set out by the peptide scaffolds.


Biomedical applications

By examining the behaviours of the molecular ‘switch’ peptides more information about interactions between proteins and more significantly the pathogenesis of some protein conformational diseases can be obtained. These diseases include scrapie, kuru, Huntington's, Parkinson's and Alzheimer's diseases. Self-assembling and surfactant peptides can be used as targeting delivery systems for genes, drugs and RNAi. Research has already shown that cationic dipeptides NH2-Phe-Phe-NH2 nanovesicles, which are about 100 nm in diameter, can be absorbed into cells through endocytosis and deliver oligonucleotides into the cell; this is one example of how peptide nanostructure can in used in gene and
drug delivery Drug delivery refers to approaches, formulations, manufacturing techniques, storage systems, and technologies involved in transporting a pharmaceutical compound to its target site to achieve a desired therapeutic effect. Principles related to dr ...
.It is also envisaged that water-soluble molecules and biological molecules would be able to be delivered to cells in this way. Self-assembling LEGO peptides can form biologically compatible scaffolds for tissue repair and engineering. this area is of great potential as a large number of diseases cannot be cured by small molecule drugs; a cell-based therapy approach is needed and peptides could potentially play a huge role in this. Cyclic peptide nanotubes formed from self-assembly are able to act as ion channels, which forms pores through the cell membrane and causes cellular osmotic collapse. Peptide can be designed to preferentially form on bacterial
cell membrane The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment ( ...
s and thus these tubes are able to perform as antibacterial and cytotoxin agents.


Molecular electronics applications

Molecular ‘switches’ peptides can be made into nanoswitches when an electronic component is incorporated. Metal nanocrystals can be covalently linked to the peptides to make them electronically responsive; research is currently being conducted on how to develop electronically controlled molecules and molecular ‘machines’ using these molecular ‘switches’. Peptide nanofibers can also be used as growth templates for a range of inorganic materials such as silver, gold, platinum, cobalt, nickel and various semiconducting materials. Electrons transferring aromatic moieties can also be attached to the side chains of peptides to form conducting nanostructures which can able to transfer electrons in a certain direction. Metal and semiconductor binding peptides has been used for the fabrication of nanowires. Peptides self-assemble into hollow nanotubes to act as casting molds; metal ions that migrates inside the tube undergoes reduction to metallic form. The peptide ‘ mold’ can then be enzymatically destroyed to produce metal nanowires of about 20 nm diameter. This has been done making gold nanowires and this application is especially significant in light of the fact that nanowires of this scale cannot be made by lithography. Researchers has also successfully developed multi layer nanocables with a silver core nanowire, a peptide insulation layer and a gold outer coat, This is done by reducing AgNO3 inside nanotubes, and then bounding a layer of
thiol In organic chemistry, a thiol (; ), or thiol derivative, is any organosulfur compound of the form , where R represents an alkyl or other organic substituent. The functional group itself is referred to as either a thiol group or a sulfhydryl gro ...
containing peptides with gold particles attached. This layer acts as a nucleation site during the next step where process of electroless deposition layers a coating of gold on the nanotubes to form metal-insulator-metal trilayer coaxial nanocables. Peptide nanotubes are able to produce nanowires of uniform size and this is particularly useful in the nanoelectric applications as electrical and magnetic properties are sensitive to size. Nanotube's exceptional
mechanical strength The field of strength of materials, also called mechanics of materials, typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the re ...
and stability makes them excellent materials for application in this area. Nanotubes has also been used in the developments of electrochemical biosensing platforms and has proved to have great potential. Dipeptide Nanotubes deposited on graphite electrodes improved electrode sensitivity; thiol-modified nanotubes deposited on gold with a coating of enzymes improved sensitivity and reproducibility for the detection of glucose and ethanol, as well as a shortened detection time, large current density and improved stability. Nanotubes have also been successfully coated with proteins, nanocrystals, and metalloporphyrin through hydrogen bonding and these coated tubes have great potentials in the areas of chemical sensors. Designed peptides with a known structure that would self-assemble into a regular growth template would enable the self-assembly of nanoscale
electronic circuits An electronic circuit is composed of individual electronic components, such as resistors, transistors, capacitors, inductors and diodes, connected by conductive wires or traces through which electric current can flow. It is a type of electrical ...
and devices. However, one issue that has yet to be resolved is the ability to control the positioning of the nanostructures. This positioning relative to substrates, to each other and to other functional component is crucial and although progress has been made in this domain, more work has to be completed before this control can be established.


Miscellaneous applications

Molecular carpet/paint peptides can be used in a spectrum of diverse industries. They can be used as ‘nano-organizers’ for non-biological materials, or could be used to study cell-cell communications and behavior. It has also been found that the catalytic abilities of lipase enzyme is greatly improved when encapsulated in peptide nanotube. After incubation in nanotubes for a week, the catalytic activities of the enzyme is improved by 33% compared with free-standing lipases at room temperature; comparison at 65 °C the improvement rises to 70%. It is suggested that the enhanced ability is due to a conformational change to an enzymatically active structure.


Limitations

Although well ordered nanostructures have already been successfully formed from self-assembling peptides, their potential will not be fully fulfilled until useful functionality is incorporated into the structures. Moreover, so far most of the peptide structures formed are in 1 or 2-D, whereas in nature most biological structures are in 3D.Shoseyov, O., I. Levy, and SpringerLink (Online service), NanoBioTechnology bioinspired devices and materials of the future. 2008, Humana Press: Totowa, N.J. p. xi, 485 p. Critique has been made in light of the fact that there is a lack in theoretical knowledge about the self-assembling behaviours of peptides. This knowledge could prove to be very useful in facilitating rational designs and precise control of the peptide assemblies. Lastly, although an extensive amount of work is being conducted on developing self-assembling peptide related applications, issues such as commercial viability and processability has not been paid the same amount of attention. Yet it is crucial for these issues to be assessed if the applications were to be realized.


References


Further reading

* {{DEFAULTSORT:Self-Assembling Peptide Peptides Chemical reactions