In
materials science, segregation is the enrichment of atoms, ions, or molecules at a microscopic region in a materials system. While the terms segregation and
adsorption
Adsorption is the adhesion of atoms, ions or molecules from a gas, liquid or dissolved solid to a surface. This process creates a film of the ''adsorbate'' on the surface of the ''adsorbent''. This process differs from absorption, in which ...
are essentially synonymous, in practice, segregation is often used to describe the partitioning of molecular constituents to defects from ''solid'' solutions,
whereas adsorption is generally used to describe such partitioning from liquids and gases to surfaces. The molecular-level segregation discussed in this article is distinct from other types of materials phenomena that are often called segregation, such as
particle segregation
In particle segregation, particulate solids, and also quasi-solids such as foams, tend to segregate by virtue of differences in the size, and also physical properties such as volume, density, shape and other properties of particles of which they ...
in
granular material
A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact (the most common example would be friction when grains collide). The constituents that compose gra ...
s, and phase separation or precipitation, wherein molecules are segregated in to macroscopic regions of different compositions. Segregation has many practical consequences, ranging from the formation of soap bubbles, to microstructural engineering in materials science,
to the stabilization of colloidal suspensions.
Segregation can occur in various materials classes. In polycrystalline solids, segregation occurs at
defects, such as dislocations,
grain boundaries
In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal ...
, stacking faults, or the interface between two phases. In liquid solutions, chemical gradients exist near second phases and surfaces due to combinations of chemical and electrical effects.
Segregation which occurs in well-equilibrated systems due to the instrinsic chemical properties of the system is termed equilibrium segregation. Segregation that occurs due to the processing history of the sample (but that would disappear at long times) is termed non-equilibrium segregation.
History
Equilibrium segregation is associated with the lattice disorder at interfaces, where there are sites of energy different from those within the lattice at which the solute atoms can deposit themselves. The equilibrium segregation is so termed because the solute atoms segregate themselves to the interface or surface in accordance with the statistics of thermodynamics in order to minimize the overall free energy of the system. This sort of partitioning of solute atoms between the grain boundary and the lattice was predicted by McLean in 1957.
Non-equilibrium segregation, first theorized by Westbrook in 1964,
occurs as a result of solutes coupling to vacancies which are moving to grain boundary sources or sinks during quenching or application of stress. It can also occur as a result of solute pile-up at a moving interface.
There are two main features of non-equilibrium segregation, by which it is most easily distinguished from equilibrium segregation. In the non-equilibrium effect, the magnitude of the segregation increases with increasing temperature and the alloy can be homogenized without further quenching because its lowest
energy state corresponds to a uniform solute distribution. In contrast, the equilibrium segregated state, by definition, is the lowest energy state in a system that exhibits equilibrium segregation, and the extent of the segregation effect decreases with increasing temperature. The details of non-equilibrium segregation are not going to be discussed here, but can be found in the review by Harries and Marwick.
Importance
Segregation of a solute to surfaces and
grain boundaries
In materials science, a grain boundary is the interface between two grains, or crystallites, in a polycrystalline material. Grain boundaries are two-dimensional defects in the crystal structure, and tend to decrease the electrical and thermal ...
in a solid produces a section of material with a discrete composition and its own set of properties that can have important (and often deleterious) effects on the overall properties of the material. These 'zones' with an increased concentration of solute can be thought of as the cement between the bricks of a building. The structural integrity of the building depends not only on the material properties of the brick, but also greatly on the properties of the long lines of mortar in between.
Segregation to grain boundaries, for example, can lead to grain boundary fracture as a result of temper brittleness, creep embrittlement, stress relief cracking of weldments,
hydrogen embrittlement
Hydrogen embrittlement (HE), also known as hydrogen-assisted cracking or hydrogen-induced cracking (HIC), is a reduction in the ductility of a metal due to absorbed hydrogen. Hydrogen atoms are small and can permeate solid metals. Once absorbed ...
, environmentally assisted fatigue, grain boundary corrosion, and some kinds of intergranular
stress corrosion cracking. A very interesting and important field of study of impurity segregation processes involves AES of grain boundaries of materials. This technique includes tensile fracturing of special specimens directly inside the UHV chamber of the Auger Electron Spectrometer that was developed by Ilyin.
Segregation to grain boundaries can also affect their respective migration rates, and so affects sinterability, as well as the grain boundary diffusivity (although sometimes these effects can be used advantageously).
Segregation to free surfaces also has important consequences involving the purity of metallurgical samples. Because of the favorable segregation of some impurities to the surface of the material, a very small concentration of impurity in the bulk of the sample can lead to a very significant coverage of the impurity on a cleaved surface of the sample. In applications where an ultra-pure surface is needed (for example, in some nanotechnology applications), the segregation of impurities to surfaces requires a much higher purity of bulk material than would be needed if segregation effects did not exist. The following figure illustrates this concept with two cases in which the total fraction of impurity atoms is 0.25 (25 impurity atoms in 100 total). In the representation on the left, these impurities are equally distributed throughout the sample, and so the fractional surface coverage of impurity atoms is also approximately 0.25. In the representation to the right, however, the same number of impurity atoms are shown segregated on the surface, so that an observation of the surface composition would yield a much higher impurity fraction (in this case, about 0.69). In fact, in this example, were impurities to completely segregate to the surface, an impurity fraction of just 0.36 could completely cover the surface of the material. In an application where surface interactions are important, this result could be disastrous.
While the intergranular failure problems noted above are sometimes severe, they are rarely the cause of major service failures (in structural steels, for example), as suitable safety margins are included in the designs. Perhaps the greater concern is that with the development of new technologies and materials with new and more extensive mechanical property requirements, and with the increasing impurity contents as a result of the increased recycling of materials, we may see intergranular failure in materials and situations not seen currently. Thus, a greater understanding of all of the mechanisms surrounding segregation might lead to being able to control these effects in the future.
Modeling potentials, experimental work, and related theories are still being developed to explain these segregation mechanisms for increasingly complex systems.
Theories of Segregation
Several theories describe the equilibrium segregation activity in materials. The adsorption theories for the solid-solid interface and the solid-vacuum surface are direct analogues of theories well known in the field of gas adsorption on the free surfaces of solids.
Langmuir–McLean theory for surface and grain boundary segregation in binary systems
This is the earliest theory specifically for grain boundaries, in which McLean
uses a model of P solute atoms distributed at random amongst N lattice sites and p solute atoms distributed at random amongst n independent grain boundary sites. The total free energy due to the solute atoms is then:
: