Second messengers are
intracellular signaling
In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
molecules released by the cell in response to exposure to extracellular signaling molecules—the first messengers. (Intercellular signals, a non-local form or
cell signaling
In biology, cell signaling (cell signalling in British English) or cell communication is the ability of a cell to receive, process, and transmit signals with its environment and with itself. Cell signaling is a fundamental property of all cellula ...
, encompassing both first messengers and second messengers, are classified as
autocrine Autocrine signaling is a form of cell signaling in which a cell secretes a hormone or chemical messenger (called the autocrine agent) that binds to autocrine receptors on that same cell, leading to changes in the cell. This can be contrasted with pa ...
,
juxtacrine
In biology, juxtacrine signalling (or contact-dependent signalling) is a type of cell–cell or cell–extracellular matrix signalling in multicellular organisms that requires close contact. In this type of signalling, a ligand on one surface bi ...
,
paracrine Paracrine signaling is a form of cell signaling, a type of cellular communication in which a cell produces a signal to induce changes in nearby cells, altering the behaviour of those cells. Signaling molecules known as paracrine factors diffuse ove ...
, and
endocrine depending on the range of the signal.) Second messengers trigger physiological changes at cellular level such as
proliferation,
differentiation, migration, survival,
apoptosis
Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes incl ...
and
depolarization
In biology, depolarization or hypopolarization is a change within a cell, during which the cell undergoes a shift in electric charge distribution, resulting in less negative charge inside the cell compared to the outside. Depolarization is esse ...
.
They are one of the triggers of intracellular
signal transduction
Signal transduction is the process by which a chemical or physical signal is transmitted through a cell as a series of molecular events, most commonly protein phosphorylation catalyzed by protein kinases, which ultimately results in a cellula ...
cascades.
Examples of second messenger molecules include
cyclic AMP
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
,
cyclic GMP
Cyclic guanosine monophosphate (cGMP) is a cyclic nucleotide derived from guanosine triphosphate (GTP). cGMP acts as a second messenger much like cyclic AMP. Its most likely mechanism of action is activation of intracellular protein kinases in r ...
,
inositol triphosphate
Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the p ...
,
diacylglycerol
A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as s ...
, and
calcium
Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. Its physical and chemical properties are most similar to ...
. First messengers are extracellular factors, often
hormone
A hormone (from the Greek participle , "setting in motion") is a class of signaling molecules in multicellular organisms that are sent to distant organs by complex biological processes to regulate physiology and behavior. Hormones are required ...
s or
neurotransmitter
A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell.
Neuro ...
s, such as
epinephrine
Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands and ...
,
growth hormone
Growth hormone (GH) or somatotropin, also known as human growth hormone (hGH or HGH) in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in h ...
, and
serotonin
Serotonin () or 5-hydroxytryptamine (5-HT) is a monoamine neurotransmitter. Its biological function is complex and multifaceted, modulating mood, cognition, reward, learning, memory, and numerous physiological processes such as vomiting and vas ...
. Because
peptide hormone
Peptide hormones or protein hormones are hormones whose molecules are peptide, or proteins, respectively. The latter have longer amino acid chain lengths than the former. These hormones have an effect on the endocrine system of animals, including h ...
s and neurotransmitters typically are biochemically
hydrophilic
A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press.
In contrast, hydrophobes are no ...
molecules, these first messengers may not physically cross the
phospholipid bilayer
The lipid bilayer (or phospholipid bilayer) is a thin polar membrane made of two layers of lipid molecules. These membranes are flat sheets that form a continuous barrier around all cells. The cell membranes of almost all organisms and many vir ...
to initiate changes within the cell directly—unlike
steroid hormone
A steroid hormone is a steroid that acts as a hormone. Steroid hormones can be grouped into two classes: corticosteroids (typically made in the adrenal cortex, hence ''cortico-'') and sex steroids (typically made in the gonads or placenta). Wi ...
s, which usually do. This functional limitation requires the cell to have signal transduction mechanisms to transduce first messenger into second messengers, so that the extracellular signal may be propagated intracellularly. An important feature of the second messenger signaling system is that second messengers may be coupled downstream to multi-cyclic kinase cascades to greatly amplify the strength of the original first messenger signal. For example,
RasGTP signals link with the
mitogen activated protein kinase
A mitogen is a small bioactive protein or peptide that induces a cell to begin cell division, or enhances the rate of division (mitosis). Mitogenesis is the induction (triggering) of mitosis, typically via a mitogen. The mechanism of action of a ...
(MAPK) cascade to amplify the allosteric activation of proliferative transcription factors such as
Myc
''Myc'' is a family of regulator genes and proto-oncogenes that code for transcription factors. The ''Myc'' family consists of three related human genes: ''c-myc'' (MYC), ''l-myc'' ( MYCL), and ''n-myc'' (MYCN). ''c-myc'' (also sometimes refe ...
and
CREB
CREB-TF (CREB, cAMP response element-binding protein) is a cellular transcription factor. It binds to certain DNA sequences called cAMP response elements (CRE), thereby increasing or decreasing the transcription of the genes. CREB was first des ...
.
Earl Wilbur Sutherland Jr., discovered second messengers, for which he won the 1971
Nobel Prize in Physiology or Medicine
The Nobel Prize in Physiology or Medicine is awarded yearly by the Nobel Assembly at the Karolinska Institute for outstanding discoveries in physiology or medicine. The Nobel Prize is not a single prize, but five separate prizes that, accord ...
. Sutherland saw that
epinephrine
Adrenaline, also known as epinephrine, is a hormone and medication which is involved in regulating visceral functions (e.g., respiration). It appears as a white microcrystalline granule. Adrenaline is normally produced by the adrenal glands and ...
would stimulate the liver to convert
glycogen
Glycogen is a multibranched polysaccharide of glucose that serves as a form of energy storage in animals, fungi, and bacteria. The polysaccharide structure represents the main storage form of glucose in the body.
Glycogen functions as one o ...
to
glucose
Glucose is a simple sugar with the molecular formula . Glucose is overall the most abundant monosaccharide, a subcategory of carbohydrates. Glucose is mainly made by plants and most algae during photosynthesis from water and carbon dioxide, using ...
(sugar) in liver cells, but epinephrine alone would not convert glycogen to glucose. He found that epinephrine had to trigger a second messenger,
cyclic AMP
Cyclic adenosine monophosphate (cAMP, cyclic AMP, or 3',5'-cyclic adenosine monophosphate) is a second messenger important in many biological processes. cAMP is a derivative of adenosine triphosphate (ATP) and used for intracellular signal transd ...
, for the liver to convert glycogen to glucose.
[
] The mechanisms were worked out in detail by
Martin Rodbell
Martin Rodbell (December 1, 1925 – December 7, 1998) was an American biochemist and molecular endocrinologist who is best known for his discovery of G-proteins. He shared the 1994 Nobel Prize in Physiology or Medicine with Alfred G. Gilman fo ...
and
Alfred G. Gilman, who won the 1994 Nobel Prize.
Secondary messenger systems can be synthesized and activated by enzymes, for example, the cyclases that synthesize
cyclic nucleotide
A cyclic nucleotide (cNMP) is a single-phosphate nucleotide with a cyclic bond arrangement between the sugar and phosphate groups. Like other nucleotides, cyclic nucleotides are composed of three functional groups: a sugar, a nitrogenous base, a ...
s, or by opening of
ion channel
Ion channels are pore-forming membrane proteins that allow ions to pass through the channel pore. Their functions include establishing a resting membrane potential, shaping action potentials and other electrical signals by gating the flow of io ...
s to allow influx of metal ions, for example
Ca2+ signaling. These small molecules bind and activate protein kinases, ion channels, and other proteins, thus continuing the signaling cascade.
Types of second messenger molecules
There are three basic types of secondary messenger molecules:
*
Hydrophobic
In chemistry, hydrophobicity is the physical property of a molecule that is seemingly repelled from a mass of water (known as a hydrophobe). In contrast, hydrophiles are attracted to water.
Hydrophobic molecules tend to be nonpolar and, th ...
molecules: water-insoluble molecules such as
diacylglycerol
A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as s ...
, and
phosphatidylinositol
Phosphatidylinositol (or Inositol Phospholipid) consists of a family of lipids as illustrated on the right, where red is x, blue is y, and black is z, in the context of independent variation, a class of the phosphatidylglycerides. In such molecul ...
s, which are membrane-associated and diffuse from the
plasma membrane
The cell membrane (also known as the plasma membrane (PM) or cytoplasmic membrane, and historically referred to as the plasmalemma) is a biological membrane that separates and protects the interior of all cells from the outside environment (t ...
into the
intermembrane space where they can reach and regulate membrane-associated ''
effector proteins.''
*
Hydrophilic
A hydrophile is a molecule or other molecular entity that is attracted to water molecules and tends to be dissolved by water.Liddell, H.G. & Scott, R. (1940). ''A Greek-English Lexicon'' Oxford: Clarendon Press.
In contrast, hydrophobes are no ...
molecules: water-soluble molecules, such as
cAMP
Camp may refer to:
Outdoor accommodation and recreation
* Campsite or campground, a recreational outdoor sleeping and eating site
* a temporary settlement for nomads
* Camp, a term used in New England, Northern Ontario and New Brunswick to descri ...
,
cGMP,
IP3, and
Ca2+, that are located within the
cytosol
The cytosol, also known as cytoplasmic matrix or groundplasm, is one of the liquids found inside cells (intracellular fluid (ICF)). It is separated into compartments by membranes. For example, the mitochondrial matrix separates the mitochondri ...
.
*
Gases
Gas is one of the four fundamental states of matter (the others being solid, liquid, and plasma).
A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or ...
:
nitric oxide (NO),
carbon monoxide (CO) and
hydrogen sulfide (H2S) which can diffuse both through cytosol and across
cellular membranes.
These intracellular messengers have some properties in common:
* They can be synthesized/released and broken down again in specific reactions by
enzyme
Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. A ...
s or ion channels.
* Some (such as Ca
2+) can be stored in special
organelle
In cell biology, an organelle is a specialized subunit, usually within a cell, that has a specific function. The name ''organelle'' comes from the idea that these structures are parts of cells, as organs are to the body, hence ''organelle,'' the ...
s and quickly released when needed.
* Their production/release and destruction can be ''localized'', enabling the cell to limit space and time of signal activity.
Common mechanisms of second messenger systems
There are several different secondary messenger systems (
cAMP
Camp may refer to:
Outdoor accommodation and recreation
* Campsite or campground, a recreational outdoor sleeping and eating site
* a temporary settlement for nomads
* Camp, a term used in New England, Northern Ontario and New Brunswick to descri ...
system,
phosphoinositol
Inositol phosphates are a group of mono- to hexa phosphorylated inositols. They play crucial roles in diverse cellular functions, such as cell growth, apoptosis, cell migration, endocytosis, and cell differentiation.
The group comprises:
* inosit ...
system, and
arachidonic acid
Arachidonic acid (AA, sometimes ARA) is a polyunsaturated omega-6 fatty acid 20:4(ω-6), or 20:4(5,8,11,14). It is structurally related to the saturated arachidic acid found in cupuaçu butter. Its name derives from the New Latin word ''arachi ...
system), but they all are quite similar in overall mechanism, although the substances involved and overall effects can vary.
In most cases, a
ligand
In coordination chemistry, a ligand is an ion or molecule (functional group) that binds to a central metal atom to form a coordination complex. The bonding with the metal generally involves formal donation of one or more of the ligand's electr ...
binds to a membrane-spanning
receptor protein molecule. The binding of a ligand to the receptor causes a conformation change in the receptor. This conformation change can affect the activity of the receptor and result in the production of active second messengers.
In the case of
G protein-coupled receptors
G protein-coupled receptors (GPCRs), also known as seven-(pass)-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptors, and G protein-linked receptors (GPLR), form a large group of evolutionarily-related p ...
, the conformation change exposes a binding site for a ''
G-protein
G proteins, also known as guanine nucleotide-binding proteins, are a family of proteins that act as molecular switches inside cells, and are involved in transmitting signals from a variety of stimuli outside a cell to its interior. Their act ...
''. The G-protein (named for the
GDP
Gross domestic product (GDP) is a monetary measure of the market value of all the final goods and services produced and sold (not resold) in a specific time period by countries. Due to its complex and subjective nature this measure is ofte ...
and
GTP molecules that bind to it) is bound to the inner membrane of the cell and consists of three subunits: alpha, beta and gamma. The G-protein is known as the "
transducer
A transducer is a device that converts energy from one form to another. Usually a transducer converts a signal in one form of energy to a signal in another.
Transducers are often employed at the boundaries of automation, measurement, and contr ...
."
When the G-protein binds with the receptor, it becomes able to exchange a GDP (guanosine diphosphate) molecule on its alpha subunit for a GTP (guanosine triphosphate) molecule. Once this exchange takes place, the alpha subunit of the G-protein transducer breaks free from the beta and gamma subunits, all parts remaining membrane-bound. The alpha subunit, now free to move along the inner membrane, eventually contacts another membrane-bound
protein
Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
- the "primary effector."
The primary effector then has an action, which creates a signal that can diffuse within the cell. This signal is called the "second (or secondary) messenger." The secondary messenger may then activate a "secondary effector" whose effects depend on the particular secondary messenger system.
Calcium ions
Calcium ions (Ca2+) contribute to the physiology and biochemistry of organisms' cells. They play an important role in signal transduction pathways, where they act as a second messenger, in neurotransmitter release from neurons, in contractio ...
are one type of second messengers and are responsible for many important physiological functions including
muscle contraction
Muscle contraction is the activation of tension-generating sites within muscle cells. In physiology, muscle contraction does not necessarily mean muscle shortening because muscle tension can be produced without changes in muscle length, such as ...
,
fertilization
Fertilisation or fertilization (see spelling differences), also known as generative fertilisation, syngamy and impregnation, is the fusion of gametes to give rise to a new individual organism or offspring and initiate its development. Proce ...
, and neurotransmitter release. The ions are normally bound or stored in intracellular components (such as the
endoplasmic reticulum(ER)) and can be released during signal transduction. The enzyme
phospholipase C
Phospholipase C (PLC) is a class of membrane-associated enzymes that cleave phospholipids just before the phosphate group (see figure). It is most commonly taken to be synonymous with the human forms of this enzyme, which play an important role ...
produces
diacylglycerol
A diglyceride, or diacylglycerol (DAG), is a glyceride consisting of two fatty acid chains covalently bonded to a glycerol molecule through ester linkages. Two possible forms exist, 1,2-diacylglycerols and 1,3-diacylglycerols. DAGs can act as s ...
and
inositol trisphosphate
Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the p ...
, which increases calcium ion permeability into the membrane. Active G-protein open up calcium channels to let calcium ions enter the plasma membrane. The other product of phospholipase C, diacylglycerol, activates
protein kinase C
In cell biology, Protein kinase C, commonly abbreviated to PKC (EC 2.7.11.13), is a family of protein kinase enzymes that are involved in controlling the function of other proteins through the phosphorylation of hydroxyl groups of serine and t ...
, which assists in the activation of cAMP (another second messenger).
Examples
Second Messengers in the Phosphoinositol Signaling Pathway
IP
3, DAG, and Ca
2+ are second messengers in the phosphoinositol pathway. The pathway begins with the binding of extracellular primary messengers such as epinephrine, acetylcholine, and hormones AGT, GnRH, GHRH, oxytocin, and TRH, to their respective receptors. Epinephrine binds to the α1 GTPase Protein Coupled Receptor (GPCR) and acetylcholine binds to M1 and M2 GPCR.
Binding of a primary messenger to these receptors results in conformational change of the receptor. The α subunit, with the help of
guanine nucleotide exchange factor
Guanine nucleotide exchange factors (GEFs) are proteins or protein domains that activate monomeric GTPases by stimulating the release of guanosine diphosphate (GDP) to allow binding of guanosine triphosphate (GTP). A variety of unrelated structu ...
s (GEFS), releases GDP, and binds GTP, resulting in the dissociation of the subunit and subsequent activation.
The activated α subunit activates phospholipase C, which hydrolyzes membrane bound
phosphatidylinositol 4,5-bisphosphate
Phosphatidylinositol 4,5-bisphosphate or PtdIns(4,5)''P''2, also known simply as PIP2 or PI(4,5)P2, is a minor phospholipid component of cell membranes. PtdIns(4,5)''P''2 is enriched at the plasma membrane where it is a substrate for a number o ...
(PIP
2), resulting in the formation of secondary messengers diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP
3).
IP
3 binds to calcium pumps on ER, transporting Ca
2+, another second messenger, into the cytoplasm.
Ca
2+ ultimately binds to many proteins, activating a cascade of enzymatic pathways.
References
External links
*
Animation: Second Messenger: cAMP
{{Authority control
Signal transduction