A screw axis (helical axis or twist axis) is a line that is simultaneously the axis of
rotation
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
and the line along which
translation
Translation is the communication of the Meaning (linguistic), meaning of a #Source and target languages, source-language text by means of an Dynamic and formal equivalence, equivalent #Source and target languages, target-language text. The ...
of a body occurs.
Chasles' theorem shows that each
Euclidean displacement in three-dimensional space has a screw axis, and the displacement can be decomposed into a rotation about and a slide along this screw axis.
Plücker coordinates
In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, P3. Because they satisfy a quadratic constraint, they establish a one-to- ...
are used to locate a screw axis in
space
Space is the boundless three-dimensional extent in which objects and events have relative position and direction. In classical physics, physical space is often conceived in three linear dimensions, although modern physicists usually consider ...
, and consist of a pair of three-dimensional vectors. The first vector identifies the direction of the axis, and the second locates its position. The special case when the first vector is zero is interpreted as a pure translation in the direction of the second vector. A screw axis is associated with each pair of vectors in the algebra of screws, also known as
screw theory
Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawe ...
.
The spatial movement of a body can be represented by a continuous set of displacements. Because each of these displacements has a screw axis, the movement has an associated ruled surface known as a ''screw surface''. This surface is not the same as the ''axode'', which is traced by the instantaneous screw axes of the movement of a body. The instantaneous screw axis, or 'instantaneous helical axis' (IHA), is the axis of the helicoidal field generated by the velocities of every point in a moving body.
When a spatial displacement specializes to a planar displacement, the screw axis becomes the ''displacement pole'', and the instantaneous screw axis becomes the ''velocity pole'', or
instantaneous center of rotation, also called an ''instant center''. The term ''centro'' is also used for a velocity pole, and the locus of these points for a planar movement is called a
centrode.
History
The proof that a spatial displacement can be decomposed into a rotation around, and translation along, a line in space is attributed to
Michel Chasles
Michel Floréal Chasles (; 15 November 1793 – 18 December 1880) was a French mathematician.
Biography
He was born at Épernon in France and studied at the École Polytechnique in Paris under Siméon Denis Poisson. In the War of the Sixth Coal ...
in 1830. Recently the work of Giulio Mozzi has been identified as presenting a similar result in 1763.
Screw axis symmetry
A screw displacement (also screw operation or rotary translation) is the composition of a rotation by an angle ''φ'' about an axis (called the screw axis) with a translation by a distance ''d'' along this axis. A positive rotation direction usually means one that corresponds to the translation direction by the
right-hand rule
In mathematics and physics, the right-hand rule is a common mnemonic for understanding orientation of axes in three-dimensional space. It is also a convenient method for quickly finding the direction of a cross-product of 2 vectors.
Most of th ...
. This means that if the rotation is clockwise, the displacement is away from the viewer. Except for ''φ'' = 180°, we have to distinguish a screw displacement from its
mirror image
A mirror image (in a plane mirror) is a reflected duplication of an object that appears almost identical, but is reversed in the direction perpendicular to the mirror surface. As an optical effect it results from reflection off from substances ...
. Unlike for rotations, a righthand and lefthand screw operation generate different groups.
The combination of a rotation about an axis and a translation in a direction perpendicular to that axis is a rotation about a parallel axis. However, a screw operation with a nonzero translation vector along the axis cannot be reduced like that. Thus the effect of a rotation combined with ''any'' translation is a screw operation in the general sense, with as special cases a pure translation, a pure rotation and the identity. Together these are all the direct
isometries in 3D.
In
crystallography
Crystallography is the experimental science of determining the arrangement of atoms in crystalline solids. Crystallography is a fundamental subject in the fields of materials science and solid-state physics (condensed matter physics). The wor ...
, a screw axis symmetry is a combination of rotation about an axis and a translation parallel to that axis which leaves a crystal unchanged. If ''φ'' = 360°/''n'' for some positive integer ''n'', then screw axis symmetry implies
translational symmetry
In geometry, to translate a geometric figure is to move it from one place to another without rotating it. A translation "slides" a thing by .
In physics and mathematics, continuous translational symmetry is the invariance of a system of equatio ...
with a translation vector which is ''n'' times that of the screw displacement.
Applicable for
space group
In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it unchan ...
s is a rotation by 360°/''n'' about an axis, combined with a translation along the axis by a multiple of the distance of the translational symmetry, divided by ''n''. This multiple is indicated by a subscript. So, 6
3 is a rotation of 60° combined with a translation of 1/2 of the lattice vector, implying that there is also 3-fold
rotational symmetry
Rotational symmetry, also known as radial symmetry in geometry, is the property a shape has when it looks the same after some rotation by a partial turn. An object's degree of rotational symmetry is the number of distinct orientations in which i ...
about this axis. The possibilities are 2
1, 3
1, 4
1, 4
2, 6
1, 6
2, and 6
3, and the
enantiomorphous 3
2, 4
3, 6
4, and 6
5.
Considering a screw axis n, if ''g'' is the
greatest common divisor
In mathematics, the greatest common divisor (GCD) of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers ''x'', ''y'', the greatest common divisor of ''x'' and ''y'' is ...
of ''n'' and ''m'', then there is also a ''g''-fold rotation axis. When ''n''/''g'' screw operations have been performed, the displacement will be ''m''/''g'', which since it is a whole number means one has moved to an equivalent point in the lattice, while carrying out a rotation by 360°/''g''. So 4, 6 and 6 create two-fold rotation axes, while 6 creates a three-fold axis.
A non-discrete screw axis
isometry group In mathematics, the isometry group of a metric space is the set of all bijective isometries (i.e. bijective, distance-preserving maps) from the metric space onto itself, with the function composition as group operation. Its identity element is the ...
contains all combinations of a rotation about some axis and a proportional translation along the axis (in
rifling
In firearms, rifling is machining helical grooves into the internal (bore) surface of a gun's barrel for the purpose of exerting torque and thus imparting a spin to a projectile around its longitudinal axis during shooting to stabilize the pro ...
, the constant of proportionality is called the
twist rate
In firearms, rifling is machining helical grooves into the internal (bore) surface of a gun's barrel for the purpose of exerting torque and thus imparting a spin to a projectile around its longitudinal axis during shooting to stabilize the pro ...
); in general this is combined with ''k''-fold rotational isometries about the same axis (''k'' ≥ 1); the set of images of a point under the isometries is a ''k''-fold
helix
A helix () is a shape like a corkscrew or spiral staircase. It is a type of smooth space curve with tangent lines at a constant angle to a fixed axis. Helices are important in biology, as the DNA molecule is formed as two intertwined helices, ...
; in addition there may be a 2-fold rotation about a perpendicularly intersecting axis, and hence a ''k''-fold helix of such axes.
Screw axis of a spatial displacement
Geometric argument
Let be an orientation-preserving rigid motion of R
3. The set of these transformations is a subgroup of
Euclidean motion
In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points.
The rigid transformation ...
s known as the special Euclidean group SE(3). These rigid motions are defined by transformations of x in R
3 given by
:
consisting of a three-dimensional rotation ''A'' followed by a translation by the vector d.
A three-dimensional
rotation
Rotation, or spin, is the circular movement of an object around a '' central axis''. A two-dimensional rotating object has only one possible central axis and can rotate in either a clockwise or counterclockwise direction. A three-dimensional ...
''A'' has a unique axis that defines a line ''L''. Let the unit vector along this line be S so that the translation vector d can be resolved into a sum of two vectors, one parallel and one perpendicular to the axis ''L'', that is,
:
In this case, the rigid motion takes the form
:
Now, the orientation preserving rigid motion ''D''* = ''A''(x) + d
⊥ transforms all the points of R
3 so that they remain in planes perpendicular to ''L''. For a rigid motion of this type there is a unique point c in the plane ''P'' perpendicular to ''L'' through 0, such that
:
The point C can be calculated as
:
because d
⊥ does not have a component in the direction of the axis of ''A''.
A rigid motion ''D''* with a fixed point must be a rotation of around the axis ''L''
c through the point c. Therefore, the rigid motion
:
consists of a rotation about the line ''L''
c followed by a translation by the vector d
''L'' in the direction of the line ''L''
c.
Conclusion: every rigid motion of R
3 is the result of a rotation of R
3 about a line ''L''
c followed by a translation in the direction of the line. The combination of a rotation about a line and translation along the line is called a screw motion.
Computing a point on the screw axis
A point C on the screw axis satisfies the equation:
[J. M. McCarthy and G. S. Soh, ''Geometric Design of Linkages'', 2nd Edition, Springer 2010](_blank)
/ref>
:
Solve this equation for C using Cayley's formula
In mathematics, Cayley's formula is a result in graph theory named after Arthur Cayley. It states that for every positive integer n, the number of trees on n labeled vertices is n^.
The formula equivalently counts the number of spanning tr ...
for a rotation matrix
:
where is the skew-symmetric matrix constructed from Rodrigues' vector
:
such that
:
Use this form of the rotation ''A'' to obtain
:
which becomes
:
This equation can be solved for C on the screw axis P(t) to obtain,
:
The screw axis of this spatial displacement has the Plücker coordinates
In geometry, Plücker coordinates, introduced by Julius Plücker in the 19th century, are a way to assign six homogeneous coordinates to each line in projective 3-space, P3. Because they satisfy a quadratic constraint, they establish a one-to- ...
.
Dual quaternion
The screw axis appears in the dual quaternion
In mathematics, the dual quaternions are an 8-dimensional real algebra isomorphic to the tensor product of the quaternions and the dual numbers. Thus, they may be constructed in the same way as the quaternions, except using dual numbers instead of ...
formulation of a spatial displacement . The dual quaternion is constructed from the dual vector
In mathematics, a linear form (also known as a linear functional, a one-form, or a covector) is a linear map from a vector space to its field (mathematics), field of scalar (mathematics), scalars (often, the real numbers or the complex numbers).
...
defining the screw axis and the dual angle , where ''φ'' is the rotation about and ''d'' the slide along this axis, which defines the displacement D to obtain,
:
A spatial displacement of points q represented as a vector quaternion can be defined using quaternion
In mathematics, the quaternion number system extends the complex numbers. Quaternions were first described by the Irish mathematician William Rowan Hamilton in 1843 and applied to mechanics in three-dimensional space. Hamilton defined a quatern ...
s as the mapping
:
where d is translation vector quaternion and ''S'' is a unit quaternion, also called a versor
In mathematics, a versor is a quaternion of norm one (a ''unit quaternion''). The word is derived from Latin ''versare'' = "to turn" with the suffix ''-or'' forming a noun from the verb (i.e. ''versor'' = "the turner"). It was introduced by Will ...
, given by
:
that defines a rotation by 2''θ'' around an axis S.
In the proper Euclidean group E+(3) a rotation may be conjugated with a translation to move it to a parallel rotation axis. Such a conjugation, using quaternion homographies, produces the appropriate screw axis to express the given spatial displacement as a screw displacement, in accord with Chasles’ theorem.
Mechanics
The instantaneous motion of a rigid body
In physics, a rigid body (also known as a rigid object) is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external force ...
may be the combination of rotation about an axis (the screw axis) and a translation along that axis. This screw move is characterized by the velocity vector for the translation and the angular velocity
In physics, angular velocity or rotational velocity ( or ), also known as angular frequency vector,(UP1) is a pseudovector representation of how fast the angular position or orientation of an object changes with time (i.e. how quickly an objec ...
vector in the same or opposite direction. If these two vectors are constant and along one of the principal axes of the body, no external forces are needed for this motion (moving and spinning
Spin or spinning most often refers to:
* Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning
* Spin, the rotation of an object around a central axis
* Spin (propaganda), an intentionally b ...
). As an example, if gravity and drag are ignored, this is the motion of a bullet
A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. Bullets are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax. Bullets are made in various shapes and co ...
fired from a rifled gun
A gun is a ranged weapon designed to use a shooting tube (gun barrel) to launch projectiles. The projectiles are typically solid, but can also be pressurized liquid (e.g. in water guns/cannons, spray guns for painting or pressure washing, p ...
.
Biomechanics
This parameter is often used in biomechanics
Biomechanics is the study of the structure, function and motion of the mechanical aspects of biological systems, at any level from whole organisms to organs, cells and cell organelles, using the methods of mechanics. Biomechanics is a branch of ...
, when describing the motion of joint
A joint or articulation (or articular surface) is the connection made between bones, ossicles, or other hard structures in the body which link an animal's skeletal system into a functional whole.Saladin, Ken. Anatomy & Physiology. 7th ed. McGraw ...
s of the body. For any period of time, joint motion can be seen as the movement of a single point on one articulating surface with respect to the adjacent surface (usually distal
Standard anatomical terms of location are used to unambiguously describe the anatomy of animals, including humans. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position pro ...
with respect to proximal
Standard anatomical terms of location are used to unambiguously describe the anatomy of animals, including humans. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position pro ...
). The total translation and rotations along the path of motion can be defined as the time integrals of the instantaneous translation and rotation velocities at the IHA for a given reference time.
In any single plane
Plane(s) most often refers to:
* Aero- or airplane, a powered, fixed-wing aircraft
* Plane (geometry), a flat, 2-dimensional surface
Plane or planes may also refer to:
Biology
* Plane (tree) or ''Platanus'', wetland native plant
* ''Planes' ...
, the path formed by the locations of the moving instantaneous axis of rotation (IAR) is known as the 'centroid', and is used in the description of joint motion.
See also
*Corkscrew (roller coaster element)
Roller coaster elements are the individual parts of roller coaster design and operation, such as a track, hill, loop, or turn. Variations in normal track movement that add thrill or excitement to the ride are often called "thrill elements".
Comm ...
*Euler's rotation theorem
In geometry, Euler's rotation theorem states that, in three-dimensional space, any displacement of a rigid body such that a point on the rigid body remains fixed, is equivalent to a single rotation about some axis that runs through the fixed p ...
– rotations without translation
*Glide reflection
In 2-dimensional geometry, a glide reflection (or transflection) is a symmetry operation that consists of a reflection over a line and then translation along that line, combined into a single operation. The intermediate step between reflection ...
*Helical symmetry
In geometry, an object has symmetry if there is an operation or transformation (such as translation, scaling, rotation or reflection) that maps the figure/object onto itself (i.e., the object has an invariance under the transform). Thus, a symme ...
*Line group A line group is a mathematical way of describing symmetries associated with moving along a line. These symmetries include repeating along that line, making that line a one-dimensional lattice. However, line groups may have more than one dimension, ...
*Screw theory
Screw theory is the algebraic calculation of pairs of vectors, such as forces and moments or angular and linear velocity, that arise in the kinematics and dynamics of rigid bodies. The mathematical framework was developed by Sir Robert Stawe ...
*Space group
In mathematics, physics and chemistry, a space group is the symmetry group of an object in space, usually in three dimensions. The elements of a space group (its symmetry operations) are the rigid transformations of an object that leave it unchan ...
References
{{Reflist
Crystallography
Euclidean geometry
Kinematics
Machines
Rigid bodies
Symmetry