HOME

TheInfoList



OR:

In
graph theory In mathematics, graph theory is the study of ''graphs'', which are mathematical structures used to model pairwise relations between objects. A graph in this context is made up of '' vertices'' (also called ''nodes'' or ''points'') which are conne ...
, Schnyder's theorem is a characterization of
planar graph In graph theory, a planar graph is a graph that can be embedded in the plane, i.e., it can be drawn on the plane in such a way that its edges intersect only at their endpoints. In other words, it can be drawn in such a way that no edges cross ...
s in terms of the
order dimension In mathematics, the dimension of a partially ordered set (poset) is the smallest number of total orders the intersection of which gives rise to the partial order. This concept is also sometimes called the order dimension or the Dushnik–Miller d ...
of their incidence posets. It is named after Walter Schnyder, who published its proof in 1989. The incidence poset of an
undirected graph In discrete mathematics, and more specifically in graph theory, a graph is a structure amounting to a set of objects in which some pairs of the objects are in some sense "related". The objects correspond to mathematical abstractions called '' v ...
with
vertex Vertex, vertices or vertexes may refer to: Science and technology Mathematics and computer science *Vertex (geometry), a point where two or more curves, lines, or edges meet * Vertex (computer graphics), a data structure that describes the positio ...
set and
edge Edge or EDGE may refer to: Technology Computing * Edge computing, a network load-balancing system * Edge device, an entry point to a computer network * Adobe Edge, a graphical development application * Microsoft Edge, a web browser developed by ...
set is the
partially ordered set In mathematics, especially order theory, a partially ordered set (also poset) formalizes and generalizes the intuitive concept of an ordering, sequencing, or arrangement of the elements of a Set (mathematics), set. A poset consists of a set toget ...
of
height Height is measure of vertical distance, either vertical extent (how "tall" something or someone is) or vertical position (how "high" a point is). For example, "The height of that building is 50 m" or "The height of an airplane in-flight is abou ...
2 that has as its elements. In this partial order, there is an order relation when is a vertex, is an edge, and is one of the two endpoints of . The order dimension of a partial order is the smallest number of total orderings whose intersection is the given partial order; such a set of orderings is called a ''realizer'' of the partial order. Schnyder's theorem states that a graph is planar if and only if the order dimension of is at most three.


Extensions

This theorem has been generalized by to a tight bound on the dimension of the height-three partially ordered sets formed analogously from the vertices, edges and faces of a
convex polyhedron A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
, or more generally of an embedded planar graph: in both cases, the order dimension of the poset is at most four. However, this result cannot be generalized to higher-dimensional
convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
s, as there exist four-dimensional polytopes whose
face lattice A convex polytope is a special case of a polytope, having the additional property that it is also a convex set contained in the n-dimensional Euclidean space \mathbb^n. Most texts. use the term "polytope" for a bounded convex polytope, and the wo ...
s have unbounded order dimension. Even more generally, for
abstract simplicial complex In combinatorics, an abstract simplicial complex (ASC), often called an abstract complex or just a complex, is a family of sets that is closed under taking subsets, i.e., every subset of a set in the family is also in the family. It is a purely c ...
es, the order dimension of the face poset of the complex is at most , where is the minimum dimension of a
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
in which the complex has a geometric realization .


Other graphs

As Schnyder observes, the incidence poset of a graph ''G'' has order dimension two if and only if the graph is a path or a subgraph of a path. For, in when an incidence poset has order dimension is two, its only possible realizer consists of two total orders that (when restricted to the graph's vertices) are the reverse of each other. Any other two orders would have an intersection that includes an order relation between two vertices, which is not allowed for incidence posets. For these two orders on the vertices, an edge between consecutive vertices can be included in the ordering by placing it immediately following the later of the two edge endpoints, but no other edges can be included. If a graph can be
colored ''Colored'' (or ''coloured'') is a racial descriptor historically used in the United States during the Jim Crow, Jim Crow Era to refer to an African Americans, African American. In many places, it may be considered a Pejorative, slur, though it ...
with four colors, then its incidence poset has order dimension at most four . The incidence poset of a
complete graph In the mathematical field of graph theory, a complete graph is a simple undirected graph in which every pair of distinct vertices is connected by a unique edge. A complete digraph is a directed graph in which every pair of distinct vertices is ...
on ''n'' vertices has order dimension \Theta(\log\log n) .


References

*. *. *. *. *. *{{citation , last = Spencer , first = J. , authorlink = Joel Spencer , journal =
Acta Mathematica Academiae Scientiarum Hungaricae '' Acta Mathematica Hungarica'' is a peer-reviewed mathematics journal of the Hungarian Academy of Sciences, published by Akadémiai Kiadó and Springer Science+Business Media. The journal was established in 1950 and publishes articles on mathe ...
, mr = 0292722 , pages = 349–353 , title = Minimal scrambling sets of simple orders , volume = 22 , year = 1971 , issue = 3–4 , doi=10.1007/bf01896428 , doi-access=free, s2cid = 123142998 . Order theory Planar graphs Theorems in graph theory