In
fluid dynamics
In physics, physical chemistry and engineering, fluid dynamics is a subdiscipline of fluid mechanics that describes the flow of fluids – liquids and gases. It has several subdisciplines, including (the study of air and other gases in motion ...
, the Schmidt number (denoted ) of a
fluid
In physics, a fluid is a liquid, gas, or other material that may continuously motion, move and Deformation (physics), deform (''flow'') under an applied shear stress, or external force. They have zero shear modulus, or, in simpler terms, are M ...
is a
dimensionless number
Dimensionless quantities, or quantities of dimension one, are quantities implicitly defined in a manner that prevents their aggregation into unit of measurement, units of measurement. ISBN 978-92-822-2272-0. Typically expressed as ratios that a ...
defined as the
ratio
In mathematics, a ratio () shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
of
momentum diffusivity (
kinematic viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
) and
mass diffusivity
Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurate ...
, and it is used to characterize fluid flows in which there are simultaneous momentum and mass diffusion
convection
Convection is single or Multiphase flow, multiphase fluid flow that occurs Spontaneous process, spontaneously through the combined effects of material property heterogeneity and body forces on a fluid, most commonly density and gravity (see buoy ...
processes. It was named after German engineer
Ernst Heinrich Wilhelm Schmidt (1892–1975).
The Schmidt number is the ratio of the
shear component for diffusivity (viscosity divided by
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
) to the diffusivity for mass transfer . It physically relates the relative thickness of the hydrodynamic layer and mass-transfer
boundary layer
In physics and fluid mechanics, a boundary layer is the thin layer of fluid in the immediate vicinity of a Boundary (thermodynamic), bounding surface formed by the fluid flowing along the surface. The fluid's interaction with the wall induces ...
.
It is defined as:
:
where (in
SI units
The International System of Units, internationally known by the abbreviation SI (from French ), is the modern form of the metric system and the world's most widely used system of measurement. It is the only system of measurement with official st ...
):
*
is the
kinematic viscosity
Viscosity is a measure of a fluid's rate-dependent drag (physics), resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for e ...
(m
2/s)
* is the
mass diffusivity
Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurate ...
(m
2/s).
* is the
dynamic viscosity
Viscosity is a measure of a fluid's rate-dependent resistance to a change in shape or to movement of its neighboring portions relative to one another. For liquids, it corresponds to the informal concept of ''thickness''; for example, syrup h ...
of the fluid (Pa·s = N·s/m
2 = kg/m·s)
* is the
density
Density (volumetric mass density or specific mass) is the ratio of a substance's mass to its volume. The symbol most often used for density is ''ρ'' (the lower case Greek letter rho), although the Latin letter ''D'' (or ''d'') can also be u ...
of the fluid (kg/m
3)
* is the
Peclet Number
* is the
Reynolds Number
In fluid dynamics, the Reynolds number () is a dimensionless quantity that helps predict fluid flow patterns in different situations by measuring the ratio between Inertia, inertial and viscous forces. At low Reynolds numbers, flows tend to ...
.
The
heat transfer
Heat transfer is a discipline of thermal engineering that concerns the generation, use, conversion, and exchange of thermal energy (heat) between physical systems. Heat transfer is classified into various mechanisms, such as thermal conduction, ...
analog of the Schmidt number is the
Prandtl number
The Prandtl number (Pr) or Prandtl group is a dimensionless number, named after the German physicist Ludwig Prandtl, defined as the ratio of momentum diffusivity to thermal diffusivity. The Prandtl number is given as:where:
* \nu : momentum d ...
(). The ratio of
thermal diffusivity
In thermodynamics, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. It is a measure of the rate of heat transfer inside a material and has SI, SI units of m2/s. It is an intensive ...
to
mass diffusivity
Diffusivity, mass diffusivity or diffusion coefficient is usually written as the proportionality constant between the molar flux due to molecular diffusion and the negative value of the gradient in the concentration of the species. More accurate ...
is the
Lewis number
In fluid dynamics and thermodynamics, the Lewis number (denoted ) is a dimensionless number defined as the ratio of thermal diffusivity to mass diffusivity. It is used to characterize fluid flows where there is simultaneous heat and mass transfer. ...
().
Turbulent Schmidt Number
The turbulent Schmidt number is commonly used in turbulence research and is defined as:
:
where:
*
is the
eddy viscosity in units of (m
2/s)
*
is the
eddy diffusivity (m
2/s).
The turbulent Schmidt number describes the ratio between the rates of turbulent transport of momentum and the turbulent transport of mass (or any passive scalar). It is related to the
turbulent Prandtl number, which is concerned with turbulent heat transfer rather than turbulent mass transfer. It is useful for solving the mass transfer problem of turbulent boundary layer flows. The simplest model for Sct is the Reynolds analogy, which yields a turbulent Schmidt number of 1. From experimental data and CFD simulations, Sct ranges from 0.2 to 6.
Stirling engines
For
Stirling engine
A Stirling engine is a heat engine that is operated by the cyclic expansion and contraction of air or other gas (the ''working fluid'') by exposing it to different temperatures, resulting in a net conversion of heat energy to mechanical Work (ph ...
s, the Schmidt number is related to the
specific power
Power-to-weight ratio (PWR, also called specific power, or power-to-mass ratio) is a calculation commonly applied to engines and mobile power sources to enable the comparison of one unit or design to another. Power-to-weight ratio is a measurement ...
.
Gustav Schmidt of the German Polytechnic Institute of Prague published an analysis in 1871 for the now-famous
closed-form Closed form may refer to:
Mathematics
* Closed-form expression, a finitary expression
* Closed differential form
In mathematics, especially vector calculus and differential topology, a closed form is a differential form ''α'' whose exterior deri ...
solution for an idealized isothermal Stirling engine model.
:
where:
*
is the Schmidt number
*
is the heat transferred into the working fluid
*
is the mean pressure of the working fluid
*
is the volume swept by the piston.
References
{{Dimensionless numbers in fluid mechanics
Dimensionless numbers of fluid mechanics
Dimensionless numbers of thermodynamics
Fluid dynamics