HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, Sard's theorem, also known as Sard's lemma or the Morse–Sard theorem, is a result in
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series (m ...
that asserts that the set of
critical value Critical value may refer to: *In differential topology, a critical value of a differentiable function between differentiable manifolds is the image (value of) ƒ(''x'') in ''N'' of a critical point ''x'' in ''M''. *In statistical hypothesis ...
s (that is, the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
of the set of critical points) of a
smooth function In mathematical analysis, the smoothness of a function (mathematics), function is a property measured by the number of Continuous function, continuous Derivative (mathematics), derivatives it has over some domain, called ''differentiability cl ...
''f'' from one
Euclidean space Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, that is, in Euclid's Elements, Euclid's ''Elements'', it was the three-dimensional space of Euclidean geometry, but in modern mathematics ther ...
or
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
to another is a
null set In mathematical analysis, a null set N \subset \mathbb is a measurable set that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notion of null s ...
, i.e., it has
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of ''n''-dimensional Euclidean space. For ''n'' = 1, 2, or 3, it coincides wit ...
0. This makes the set of critical values "small" in the sense of a
generic property In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomi ...
. The theorem is named for
Anthony Morse Anthony Perry Morse (21 August 1911 – 6 March 1984) was an American mathematician who worked in both analysis, especially measure theory, and in the foundations of mathematics. He is best known as the co-creator, together with John L. Kelle ...
and
Arthur Sard Arthur Sard (28 July 1909, New York City – 31 August 1980, Basel) was an American mathematician, famous for his work in differential topology and in spline interpolation. His fame stems primarily from Sard's theorem, which says that the set o ...
.


Statement

More explicitly, let :f\colon \mathbb^n \rightarrow \mathbb^m be C^k, (that is, k times
continuously differentiable In mathematics, a differentiable function of one real variable is a function whose derivative exists at each point in its domain. In other words, the graph of a differentiable function has a non-vertical tangent line at each interior point in its ...
), where k\geq \max\. Let X \subset \mathbb R^n denote the ''
critical set Critical or Critically may refer to: *Critical, or critical but stable, medical states **Critical, or intensive care medicine *Critical juncture, a discontinuous change studied in the social sciences. *Critical Software, a company specializing in ...
'' of f, which is the set of points x\in \mathbb^n at which the
Jacobian matrix In vector calculus, the Jacobian matrix (, ) of a vector-valued function of several variables is the matrix of all its first-order partial derivatives. When this matrix is square, that is, when the function takes the same number of variables as ...
of f has
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * H ...
. Then the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
f(X) has Lebesgue measure 0 in \mathbb^m. Intuitively speaking, this means that although X may be large, its image must be small in the sense of Lebesgue measure: while f may have many critical ''points'' in the domain \mathbb^n, it must have few critical ''values'' in the image \mathbb^m. More generally, the result also holds for mappings between
differentiable manifold In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus. Any manifold can be described by a collection of charts (atlas). One ma ...
s M and N of dimensions m and n, respectively. The critical set X of a C^k function :f:N\rightarrow M consists of those points at which the differential :df:TN\rightarrow TM has rank less than m as a linear transformation. If k\geq \max\, then Sard's theorem asserts that the image of X has measure zero as a subset of M. This formulation of the result follows from the version for Euclidean spaces by taking a
countable set In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
of coordinate patches. The conclusion of the theorem is a local statement, since a countable union of sets of measure zero is a set of measure zero, and the property of a subset of a coordinate patch having zero measure is invariant under
diffeomorphism In mathematics, a diffeomorphism is an isomorphism of smooth manifolds. It is an invertible function that maps one differentiable manifold to another such that both the function and its inverse are differentiable. Definition Given two m ...
.


Variants

There are many variants of this lemma, which plays a basic role in
singularity theory In mathematics, singularity theory studies spaces that are almost manifolds, but not quite. A string can serve as an example of a one-dimensional manifold, if one neglects its thickness. A singularity can be made by balling it up, dropping it ...
among other fields. The case m=1 was proven by
Anthony P. Morse Anthony Perry Morse (21 August 1911 – 6 March 1984) was an American mathematician who worked in both analysis, especially measure theory, and in the foundations of mathematics. He is best known as the co-creator, together with John L. Kelle ...
in 1939, and the general case by
Arthur Sard Arthur Sard (28 July 1909, New York City – 31 August 1980, Basel) was an American mathematician, famous for his work in differential topology and in spline interpolation. His fame stems primarily from Sard's theorem, which says that the set o ...
in 1942. A version for infinite-dimensional
Banach manifold In mathematics, a Banach manifold is a manifold modeled on Banach spaces. Thus it is a topological space in which each point has a neighbourhood homeomorphic to an open set in a Banach space (a more involved and formal definition is given below). B ...
s was proven by
Stephen Smale Stephen Smale (born July 15, 1930) is an American mathematician, known for his research in topology, dynamical systems and mathematical economics. He was awarded the Fields Medal in 1966 and spent more than three decades on the mathematics facult ...
. The statement is quite powerful, and the proof involves analysis. In
topology In mathematics, topology (from the Greek language, Greek words , and ) is concerned with the properties of a mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformations, such ...
it is often quoted — as in the
Brouwer fixed-point theorem Brouwer's fixed-point theorem is a fixed-point theorem in topology, named after L. E. J. (Bertus) Brouwer. It states that for any continuous function f mapping a compact convex set to itself there is a point x_0 such that f(x_0)=x_0. The simplest ...
and some applications in
Morse theory In mathematics, specifically in differential topology, Morse theory enables one to analyze the topology of a manifold by studying differentiable functions on that manifold. According to the basic insights of Marston Morse, a typical differentiabl ...
— in order to prove the weaker corollary that “a non-constant smooth map has at least one regular value”. In 1965 Sard further generalized his theorem to state that if f:N\rightarrow M is C^k for k\geq \max\ and if A_r\subseteq N is the set of points x\in N such that df_x has rank strictly less than r, then the ''r''-dimensional
Hausdorff measure In mathematics, Hausdorff measure is a generalization of the traditional notions of area and volume to non-integer dimensions, specifically fractals and their Hausdorff dimensions. It is a type of outer measure, named for Felix Hausdorff, that ass ...
of f(A_r) is zero. In particular the
Hausdorff dimension In mathematics, Hausdorff dimension is a measure of ''roughness'', or more specifically, fractal dimension, that was first introduced in 1918 by mathematician Felix Hausdorff. For instance, the Hausdorff dimension of a single point is zero, of a ...
of f(A_r) is at most ''r''. Caveat: The Hausdorff dimension of f(A_r) can be arbitrarily close to ''r''.


See also

*
Generic property In mathematics, properties that hold for "typical" examples are called generic properties. For instance, a generic property of a class of functions is one that is true of "almost all" of those functions, as in the statements, "A generic polynomi ...


References


Further reading

* * {{Measure theory Lemmas in analysis Smooth functions Multivariable calculus Singularity theory Theorems in analysis Theorems in differential geometry Theorems in measure theory