Samarium–neodymium dating is a
radiometric dating
Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to Chronological dating, date materials such as Rock (geology), rocks or carbon, in which trace radioactive impurity, impurities were selectively incorporat ...
method useful for determining the ages of
rocks and
meteorite
A meteorite is a rock (geology), rock that originated in outer space and has fallen to the surface of a planet or Natural satellite, moon. When the original object enters the atmosphere, various factors such as friction, pressure, and chemical ...
s, based on the
alpha decay
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
of the long-lived
samarium isotope
Isotopes are distinct nuclear species (or ''nuclides'') of the same chemical element. They have the same atomic number (number of protons in their Atomic nucleus, nuclei) and position in the periodic table (and hence belong to the same chemica ...
() to the stable
radiogenic
A radiogenic nuclide is a nuclide that is produced by a process of radioactive decay. It may itself be radioactive (a radionuclide) or stable (a stable nuclide).
Radiogenic nuclides (more commonly referred to as radiogenic isotopes) form some of ...
neodymium
Neodymium is a chemical element; it has Symbol (chemistry), symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth element, rare-earth metals. It is a hard (physics), hard, sli ...
isotope (). Neodymium isotope ratios together with samarium–neodymium ratios are used to provide information on the age and source of
igneous melts. It is sometimes assumed that at the moment when
crustal material is formed from the
mantle the neodymium isotope ratio depends only on the time when this event occurred, but thereafter it evolves in a way that depends on the new ratio of samarium to neodymium in the crustal material, which will be different from the ratio in the mantle material. Samarium–neodymium dating allows the determination of when the crustal material was formed.
The usefulness of Sm–Nd dating stems from the fact that these two elements are
rare earth elements and are thus, theoretically, not particularly susceptible to partitioning during
sedimentation
Sedimentation is the deposition of sediments. It takes place when particles in suspension settle out of the fluid in which they are entrained and come to rest against a barrier. This is due to their motion through the fluid in response to th ...
and
diagenesis.
[ Fractional crystallisation of ]felsic
In geology, felsic is a grammatical modifier, modifier describing igneous rocks that are relatively rich in elements that form feldspar and quartz.Marshak, Stephen, 2009, ''Essentials of Geology,'' W. W. Norton & Company, 3rd ed. It is contrasted ...
minerals changes the Sm/Nd ratio of the resultant materials. This, in turn, influences the rate at which the 143Nd/144Nd ratio increases due to production of radiogenic 143Nd.
In many cases, Sm–Nd and Rb–Sr isotope data are used together.
Sm–Nd radiometric dating
Samarium has seven naturally occurring isotopes, and neodymium has seven. The two elements are joined in a parent–daughter relationship by the alpha decay
Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus). The parent nucleus transforms or "decays" into a daughter product, with a mass number that is reduced by four and an a ...
of parent 147Sm to radiogenic daughter 143Nd with a half-life Half-life is a mathematical and scientific description of exponential or gradual decay.
Half-life, half life or halflife may also refer to:
Film
* Half-Life (film), ''Half-Life'' (film), a 2008 independent film by Jennifer Phang
* ''Half Life: ...
of 1.066(5) years and by the alpha decay of 146Sm (an almost- extinct radionuclide with a half-life of 9.20(26) years) to produce 142Nd.
To find the date at which a rock (or group of rocks) formed one can use the method of isochron dating.[ The Sm–Nd isochron plots the ratio of radiogenic 143Nd to non-radiogenic 144Nd against the ratio of the parent isotope 147Sm to the non-radiogenic isotope 144Nd. 144Nd is used to normalize the radiogenic isotope in the isochron because it is a quasi-stable (with a half-life of 2.29(16) years) and relatively abundant neodymium isotope.
The Sm–Nd isochron is defined by the following equation:
:
where:
: ''t'' is the age of the sample,
: λ is the decay constant of 147Sm,
: (''e''λ''t''−1) is the slope of the isochron which defines the age of the system.
Alternatively, one can assume that the material formed from mantle material which was following the same path of evolution of these ratios as ]chondrite
A chondrite is a stony (non-metallic) meteorite that has not been modified by either melting or planetary differentiation, differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar Syste ...
s, and then again the time of formation can be calculated (see #The CHUR model).
Sm and Nd geochemistry
The concentration of Sm and Nd in silicate
A silicate is any member of a family of polyatomic anions consisting of silicon and oxygen, usually with the general formula , where . The family includes orthosilicate (), metasilicate (), and pyrosilicate (, ). The name is also used ...
minerals increase with the order in which they crystallise from a magma according to Bowen's reaction series. Samarium is accommodated more easily into mafic minerals, so a mafic rock which crystallises mafic minerals will concentrate neodymium in the melt phase relative to samarium. Thus, as a melt undergoes fractional crystallization from a mafic to a more felsic composition, the abundance of Sm and Nd changes, as does the ratio between Sm and Nd.
Thus, ultramafic rocks have high Sm and low Nd and therefore ''high'' Sm/Nd ratios. Felsic
In geology, felsic is a grammatical modifier, modifier describing igneous rocks that are relatively rich in elements that form feldspar and quartz.Marshak, Stephen, 2009, ''Essentials of Geology,'' W. W. Norton & Company, 3rd ed. It is contrasted ...
rocks have low concentrations of Sm and high Nd and therefore ''low'' Sm/Nd ratios (for example komatiite has 1.14 parts per million (ppm) Nd and 3.59 ppm Sm versus 4.65 ppm Nd and 21.6 ppm Sm in rhyolite
Rhyolite ( ) is the most silica-rich of volcanic rocks. It is generally glassy or fine-grained (aphanitic) in texture (geology), texture, but may be porphyritic, containing larger mineral crystals (phenocrysts) in an otherwise fine-grained matri ...
).
The importance of this process is apparent in modeling the age of continental crust
Continental crust is the layer of igneous, metamorphic, and sedimentary rocks that forms the geological continents and the areas of shallow seabed close to their shores, known as '' continental shelves''. This layer is sometimes called '' si ...
formation.
The CHUR model
Through the analysis of isotopic compositions of neodymium, DePaolo and Wasserburg (1976) discovered that terrestrial igneous rocks at the time of their formation from melts closely followed the " chondritic uniform reservoir" or "chondritic unifractionated reservoir" (CHUR) line – the way the 143Nd:144Nd ratio increased with time in chondrite
A chondrite is a stony (non-metallic) meteorite that has not been modified by either melting or planetary differentiation, differentiation of the parent body. They are formed when various types of dust and small grains in the early Solar Syste ...
s. Chondritic meteorites are thought to represent the earliest (unsorted) material that formed in the Solar System
The Solar SystemCapitalization of the name varies. The International Astronomical Union, the authoritative body regarding astronomical nomenclature, specifies capitalizing the names of all individual astronomical objects but uses mixed "Sola ...
before planets formed. They have relatively homogeneous trace-element signatures, and therefore their isotopic evolution can model the evolution of the whole Solar System and of the "bulk Earth". After plotting the ages and initial 143Nd/144Nd ratios of terrestrial igneous rocks on a Nd evolution vs. time diagram, DePaolo and Wasserburg determined that Archean rocks had initial Nd isotope ratios very similar to that defined by the CHUR evolution line.
Epsilon notation
Since 143Nd/144Nd departures from the CHUR evolution line are very small, DePaolo and Wasserburg argued that it would be useful to create a form of notation that described 143Nd/144Nd in terms of their deviations from the CHUR evolution line. This is called the epsilon notation, whereby one epsilon unit represents a one part per 10,000 deviation from the CHUR composition.[Dickin, A. P., 2005]
Radiogenic Isotope Geology
2nd ed. Cambridge: Cambridge University Press. pp. 76–77. Algebraically, epsilon units can be defined by the equation
:
Since epsilon units are finer and therefore a more tangible representation of the initial Nd isotope ratio, by using these instead of the initial isotopic ratios, it is easier to comprehend and therefore compare initial ratios of crust with different ages. In addition, epsilon units will normalize the initial ratios to CHUR, thus eliminating any effects caused by various analytical mass fractionation correction methods applied.[
]
Nd model ages
Since CHUR defines initial ratios of continental rocks through time, it was deduced that measurements of 143Nd/144Nd and 147Sm/144Nd, with the use of CHUR, could produce model ages for the segregation from the mantle of the melt that formed any crustal rock. This has been termed ''T''CHUR.
In order for a ''T''CHUR age to be calculated, fractionation between Nd/Sm would have to have occurred during magma extraction from the mantle to produce a continental rock. This fractionation would then cause a deviation between the crustal and mantle isotopic evolution lines. The intersection between these two evolution lines then indicates the crustal formation age. The ''T''CHUR age is defined by the following equation:
:
The ''T''CHUR age of a rock can yield a formation age for the crust as a whole if the sample has not suffered disturbance after its formation. Since Sm/Nd are rare-earth elements (REE), their characteristically immobile ratios resist partitioning during metamorphism and melting of silicate rocks. This therefore allows crustal formation ages to be calculated, despite any metamorphism the sample has undergone.
The depleted-mantle model
Despite the good fit of Archean plutons to the CHUR Nd isotope evolution line, DePaolo and Wasserburg (1976) observed that the majority of young oceanic volcanics (Mid Ocean Ridge basalts and Island Arc basalts) lay +7 to +12 ɛ units above the CHUR line (see figure). This led to the realization that Archean continental igneous rocks that plotted within the error of the CHUR line could instead lie on a depleted-mantle evolution line characterized by increasing Sm/Nd and 143Nd/144Nd ratios over time. To further analyze this gap between the Archean CHUR data and the young volcanic samples, a study was conducted on the Proterozoic metamorphic basement of the Colorado Front Ranges (the Idaho Springs Formation).[DePaolo, D. J. (1981). Neodymium isotopes in the Colorado Front Range and crust – mantle evolution in the Proterozoic. Nature 291, 193–197.] The initial 143Nd/144Nd ratios of the samples analyzed are plotted on a ɛNd versus time diagram shown in the figure. DePaolo (1981) fitted a quadratic curve to the Idaho Springs and average ɛNd for the modern oceanic island arc data, thus representing the neodymium isotope evolution of a depleted reservoir. The composition of the depleted reservoir relative to the CHUR evolution line, at time ''T'', is given by the equation
.
Sm–Nd model ages calculated using this curve are denoted as TDM ages. DePaolo (1981) argued that these TDM model ages would yield a more accurate age for crustal formation ages than TCHUR model ages – for example, an anomalously low TCHUR model age of 0.8 Gy from McCulloch and Wasserburg's Grenville composite was revised to a TDM age of 1.3 Gy, typical for juvenile crust formation during the Grenville orogeny
The Grenville orogeny was a long-lived Mesoproterozoic mountain-building event associated with the assembly of the supercontinent Rodinia. Its record is a prominent orogenic belt which spans a significant portion of the North American continent, ...
.
See also
* Radiometric dating
Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to Chronological dating, date materials such as Rock (geology), rocks or carbon, in which trace radioactive impurity, impurities were selectively incorporat ...
Notes
References
External links
Geochronology and Isotopes Data Portal
{{DEFAULTSORT:Samarium-neodymium dating
Radiometric dating
Samarium
Neodymium