Samarium Hydride
   HOME

TheInfoList



OR:

Samarium is a
chemical element A chemical element is a species of atoms that have a given number of protons in their nuclei, including the pure substance consisting only of that species. Unlike chemical compounds, chemical elements cannot be broken down into simpler sub ...
with
symbol A symbol is a mark, sign, or word that indicates, signifies, or is understood as representing an idea, object, or relationship. Symbols allow people to go beyond what is known or seen by creating linkages between otherwise very different conc ...
Sm and
atomic number The atomic number or nuclear charge number (symbol ''Z'') of a chemical element is the charge number of an atomic nucleus. For ordinary nuclei, this is equal to the proton number (''n''p) or the number of protons found in the nucleus of every ...
62. It is a moderately hard silvery
metal A metal (from Greek μέταλλον ''métallon'', "mine, quarry, metal") is a material that, when freshly prepared, polished, or fractured, shows a lustrous appearance, and conducts electricity and heat relatively well. Metals are typicall ...
that slowly oxidizes in air. Being a typical member of the
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
series, samarium usually has the
oxidation state In chemistry, the oxidation state, or oxidation number, is the hypothetical charge of an atom if all of its bonds to different atoms were fully ionic. It describes the degree of oxidation (loss of electrons) of an atom in a chemical compound. C ...
+3. Compounds of samarium(II) are also known, most notably the
monoxide A monoxide is any oxide containing only one atom of oxygen. A well known monoxide is carbon monoxide; see carbon monoxide poisoning. The prefix mono (Greek for "one") is used in chemical nomenclature. In proper nomenclature, the prefix is not ...
SmO, monochalcogenides SmS, SmSe and SmTe, as well as
samarium(II) iodide Samarium(II) iodide is an inorganic compound with the formula SmI2. When employed as a solution for organic synthesis, it is known as Kagan's reagent. SmI2 is a green solid and solutions are green as well. It is a strong one-electron reducing a ...
. The last compound is a common
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth meta ...
in
chemical synthesis As a topic of chemistry, chemical synthesis (or combination) is the artificial execution of chemical reactions to obtain one or several products. This occurs by physical and chemical manipulations usually involving one or more reactions. In moder ...
. Samarium has no significant biological role, and some samarium salts are slightly toxic. Samarium was discovered in 1879 by French chemist
Paul-Émile Lecoq de Boisbaudran Paul-Émile Lecoq de Boisbaudran, also called François Lecoq de Boisbaudran (18 April 1838 – 28 May 1912), was a French chemist known for his discoveries of the chemical elements gallium, samarium and dysprosium. He developed methods for s ...
and named after the mineral
samarskite Samarskite is a radioactive rare earth mineral series which includes samarskite-(Y), with the chemical formula and samarskite-(Yb), with the chemical formula . The formula for samarskite-(Y) is also given as . Samarskite crystallizes in the orth ...
from which it was isolated. The mineral itself was named after a Russian mine official, Colonel
Vassili Samarsky-Bykhovets Vasili Yevgrafovich Samarsky-Bykhovets (russian: Василий Евграфович Самарский-Быховец; 7 November 1803 – 31 May 1870) was a Russian mining engineer and the chief of Russian Mining Engineering Corps between 1845 an ...
, who thus became the first person to have a chemical element named after him, albeit indirectly. Though classified as a
rare-earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
, samarium is the 40th most abundant element in Earth's crust and more common than metals such as
tin Tin is a chemical element with the symbol Sn (from la, stannum) and atomic number 50. Tin is a silvery-coloured metal. Tin is soft enough to be cut with little force and a bar of tin can be bent by hand with little effort. When bent, t ...
. Samarium occurs in concentration up to 2.8% in several minerals including
cerite Cerite is a complex silicate mineral group containing cerium, formula .http://rruff.geo.arizona.edu/doclib/hom/ceritece.pdf Handbook of Mineralogy The cerium and lanthanum content varies with the Ce rich species (cerite-(Ce)) and the La rich speci ...
,
gadolinite Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula . It is called gadolinite-(Ce) or gadolinite-(Y), depending on ...
, samarskite,
monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium- ...
and
bastnäsite The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-( Ce) with a formula of (Ce, La)CO3F, bastnäsite-( La) with a formula of (La, Ce)CO3F, and bastnäsite-( Y) with a formul ...
, the last two being the most common commercial sources of the element. These minerals are mostly found in China, the United States, Brazil, India, Sri Lanka and Australia; China is by far the world leader in samarium mining and production. The main commercial use of samarium is in
samarium–cobalt magnet A samarium–cobalt (SmCo) magnet, a type of rare-earth magnet, is a strong permanent magnet made of two basic elements: samarium and cobalt. They were developed in the early 1960s based on work done by Karl Strnat at Wright-Patterson Air Force Ba ...
s, which have permanent
magnet A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, ...
ization second only to
neodymium magnet A hard_disk_drive.html"_;"title="Nickel-plated_neodymium_magnet_on_a_bracket_from_a_hard_disk_drive">Nickel-plated_neodymium_magnet_on_a_bracket_from_a_hard_disk_drive_ file:Nd-magnet.jpg.html" ;"title="hard_disk_drive_.html" ;"title="hard_disk_d ...
s; however, samarium compounds can withstand significantly higher temperatures, above , without losing their magnetic properties, due to the alloy's higher
Curie point In physics and materials science, the Curie temperature (''T''C), or Curie point, is the temperature above which certain materials lose their permanent magnetic properties, which can (in most cases) be replaced by induced magnetism. The Cur ...
. The
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
samarium-153 is the active component of the drug samarium (153Sm) lexidronam (Quadramet), which kills cancer cells in
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissue (biology), tissues of the lung. Lung carcinomas derive from tran ...
,
prostate cancer Prostate cancer is cancer of the prostate. Prostate cancer is the second most common cancerous tumor worldwide and is the fifth leading cause of cancer-related mortality among men. The prostate is a gland in the male reproductive system that sur ...
,
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a re ...
and
osteosarcoma An osteosarcoma (OS) or osteogenic sarcoma (OGS) (or simply bone cancer) is a cancerous tumor in a bone. Specifically, it is an aggressive malignant neoplasm that arises from primitive transformed cells of mesenchymal origin (and thus a sarcoma) a ...
. Another isotope,
samarium-149 Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06 y) and 148Sm (7 y), with 152Sm being the most abundant (26. ...
, is a strong
neutron The neutron is a subatomic particle, symbol or , which has a neutral (not positive or negative) charge, and a mass slightly greater than that of a proton. Protons and neutrons constitute the nuclei of atoms. Since protons and neutrons beh ...
absorber and so is added to
control rod Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing ...
s of
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
s. It also forms as a decay product during the reactor operation and is one of the important factors considered in the reactor design and operation. Other uses of samarium include
catalysis Catalysis () is the process of increasing the rate of a chemical reaction by adding a substance known as a catalyst (). Catalysts are not consumed in the reaction and remain unchanged after it. If the reaction is rapid and the catalyst recyc ...
of
chemical reaction A chemical reaction is a process that leads to the IUPAC nomenclature for organic transformations, chemical transformation of one set of chemical substances to another. Classically, chemical reactions encompass changes that only involve the pos ...
s,
radioactive dating Radiometric dating, radioactive dating or radioisotope dating is a technique which is used to date materials such as rocks or carbon, in which trace radioactive impurities were selectively incorporated when they were formed. The method compares ...
and
X-ray laser An X-ray laser is a device that uses stimulated emission to generate or amplify electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually on the order of several tens of nanometers (nm) wavelength ...
s.


Physical properties

Samarium is a
rare earth element The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silv ...
with hardness and density similar to
zinc Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
. With boiling point 1794 °C, samarium is the third most volatile lanthanide after
ytterbium Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is a metal, the fourteenth and penultimate element in the lanthanide series, which is the basis of the relative stability of its +2 oxidation state. However, like the othe ...
and
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
; this helps separation of samarium from ore. At ambient conditions, samarium normally has a
rhombohedral In geometry, a rhombohedron (also called a rhombic hexahedron or, inaccurately, a rhomboid) is a three-dimensional figure with six faces which are rhombus, rhombi. It is a special case of a parallelepiped where all edges are the same length. It c ...
structure (α form). Upon heating to 731 °C, its crystal symmetry changes to
hexagonal close-packed In geometry, close-packing of equal spheres is a dense arrangement of congruent spheres in an infinite, regular arrangement (or lattice). Carl Friedrich Gauss proved that the highest average density – that is, the greatest fraction of space occu ...
(''hcp''), but transition temperature depends on metal purity. Further heating to 922 °C transforms the metal into a
body-centered cubic In crystallography, the cubic (or isometric) crystal system is a crystal system where the unit cell is in the shape of a cube. This is one of the most common and simplest shapes found in crystals and minerals. There are three main varieties of ...
(''bcc'') phase. Heating to 300 °C plus compression to 40 
kbar The bar is a metric unit of pressure, but not part of the International System of Units (SI). It is defined as exactly equal to 100,000  Pa (100 kPa), or slightly less than the current average atmospheric pressure on Earth at sea lev ...
results in a double-hexagonally close-packed structure (''dhcp''). Higher pressure of the order of hundreds or thousands of kilobars induces a series of phase transformations, in particular with a
tetragonal In crystallography, the tetragonal crystal system is one of the 7 crystal systems. Tetragonal crystal lattices result from stretching a cubic lattice along one of its lattice vectors, so that the cube becomes a rectangular prism with a square ...
phase appearing at about 900 kbar. In one study, the ''dhcp'' phase could be produced without compression, using a nonequilibrium annealing regime with a rapid temperature change between about 400 and 700 °C, confirming the transient character of this samarium phase. Also, thin films of samarium obtained by vapor deposition may contain the ''hcp'' or ''dhcp'' phases at ambient conditions. Samarium and its
sesquioxide A sesquioxide is an oxide of an element (or radical), where the ratio between the number of atoms of that element and the number of atoms of oxygen is 2:3. For example, aluminium oxide and phosphorus(III) oxide are sesquioxides. Many sesquioxid ...
are
paramagnetic Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, d ...
at room temperature. Their corresponding effective magnetic moments, below 2 μB, are the 3rd lowest among lanthanides (and their oxides) after lanthanum and lutetium. The metal transforms to an
antiferromagnetic In materials that exhibit antiferromagnetism, the magnetic moments of atoms or molecules, usually related to the spins of electrons, align in a regular pattern with neighboring spins (on different sublattices) pointing in opposite directions. ...
state upon cooling to 14.8 K. Individual samarium atoms can be isolated by encapsulating them into
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
molecules. They can also be doped between the C60 molecules in the
fullerene A fullerene is an allotrope of carbon whose molecule consists of carbon atoms connected by single and double bonds so as to form a closed or partially closed mesh, with fused rings of five to seven atoms. The molecule may be a hollow sphere, ...
solid, rendering it
superconductive Superconductivity is a set of physical properties observed in certain materials where electrical resistance vanishes and magnetic flux fields are expelled from the material. Any material exhibiting these properties is a superconductor. Unlike ...
at temperatures below 8 K. Samarium doping of
iron-based superconductor Iron-based superconductors (FeSC) are iron-containing chemical compounds whose superconducting properties were discovered in 2006. In 2008, led by recently discovered iron pnictide compounds (originally known as oxypnictides), they were in the firs ...
s – the most recent class of
high-temperature superconductor High-temperature superconductors (abbreviated high-c or HTS) are defined as materials that behave as superconductors at temperatures above , the boiling point of liquid nitrogen. The adjective "high temperature" is only in respect to previ ...
– allows enhancing their transition temperature to 56 K, which is the highest value achieved so far in this series.


Chemical properties

Freshly prepared samarium has a silvery luster. In air, it slowly oxidizes at room temperature and spontaneously ignites at 150 °C. Even when stored under
mineral oil Mineral oil is any of various colorless, odorless, light mixtures of higher alkanes from a mineral source, particularly a distillate of petroleum, as distinct from usually edible vegetable oils. The name 'mineral oil' by itself is imprecise, ...
, samarium gradually oxidizes and develops a grayish-yellow powder of the
oxide An oxide () is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– (molecular) ion. with oxygen in the oxidation state of −2. Most of the E ...
-
hydroxide Hydroxide is a diatomic anion with chemical formula OH−. It consists of an oxygen and hydrogen atom held together by a single covalent bond, and carries a negative electric charge. It is an important but usually minor constituent of water. I ...
mixture at the surface. The metallic appearance of a sample can be preserved by sealing it under an inert gas such as
argon Argon is a chemical element with the symbol Ar and atomic number 18. It is in group 18 of the periodic table and is a noble gas. Argon is the third-most abundant gas in Earth's atmosphere, at 0.934% (9340 ppmv). It is more than twice as abu ...
. Samarium is quite electropositive and reacts slowly with cold water and quite quickly with hot water to form samarium hydroxide: : Samarium dissolves readily in dilute
sulfuric acid Sulfuric acid (American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular formu ...
to form solutions containing the yellow
Greenwood Green wood is unseasoned wood. Greenwood or Green wood may also refer to: People * Greenwood (surname) Settlements Australia * Greenwood, Queensland, a locality in the Toowoomba Region * Greenwood, Western Australia, a suburb of Perth C ...
, p. 1243
to pale green Sm(III) ions, which exist as complexes: : Samarium is one of the few lanthanides that exhibit oxidation state +2. ions are blood-red in aqueous solution.
Greenwood Green wood is unseasoned wood. Greenwood or Green wood may also refer to: People * Greenwood (surname) Settlements Australia * Greenwood, Queensland, a locality in the Toowoomba Region * Greenwood, Western Australia, a suburb of Perth C ...
, p. 1248


Compounds


Oxides

The most stable oxide of samarium is the
sesquioxide A sesquioxide is an oxide of an element (or radical), where the ratio between the number of atoms of that element and the number of atoms of oxygen is 2:3. For example, aluminium oxide and phosphorus(III) oxide are sesquioxides. Many sesquioxid ...
Sm2O3. Like many samarium compounds, it exists in several crystalline phases. The trigonal form is obtained by slow cooling from the melt. The melting point of Sm2O3 is high (2345 °C), so it is usually melted not by direct heating, but with
induction heating Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an induction coil that creates an electromagnetic field within th ...
, through a radio-frequency coil. Sm2O3 crystals of monoclinic symmetry can be grown by the flame fusion method (
Verneuil process The Verneuil method (or Verneuil process or Verneuil technique), also called flame fusion, was the first commercially successful method of manufacturing synthetic gemstones, developed in the late 1883 by the French chemist Auguste Verneuil. It ...
) from Sm2O3 powder, that yields cylindrical boules up to several centimeters long and about one centimeter in diameter. The boules are transparent when pure and defect-free and are orange otherwise. Heating the metastable trigonal Sm2O3 to 1900 °C converts it to the more stable monoclinic phase. Cubic Sm2O3 has also been described. Samarium is one of the few lanthanides that form a monoxide, SmO. This lustrous golden-yellow compound was obtained by reducing Sm2O3 with samarium metal at high temperature (1000 °C) and pressure above 50 kbar; lowering the pressure resulted in incomplete reaction. SmO has cubic rock-salt lattice structure.
Greenwood Green wood is unseasoned wood. Greenwood or Green wood may also refer to: People * Greenwood (surname) Settlements Australia * Greenwood, Queensland, a locality in the Toowoomba Region * Greenwood, Western Australia, a suburb of Perth C ...
, p. 1239


Chalcogenides

Samarium forms a trivalent
sulfide Sulfide (British English also sulphide) is an inorganic anion of sulfur with the chemical formula S2− or a compound containing one or more S2− ions. Solutions of sulfide salts are corrosive. ''Sulfide'' also refers to chemical compounds lar ...
,
selenide A selenide is a chemical compound containing a selenium anion with oxidation number of −2 (Se2−), much as sulfur does in a sulfide. The chemistry of the selenides and sulfides is similar. Similar to sulfide, in aqueous solution, the selenide ion ...
and telluride. Divalent chalcogenides SmS, SmSe and SmTe with cubic rock-salt crystal structure are also known. They are remarkable by converting from semiconducting to metallic state at room temperature upon application of pressure. Whereas the transition is continuous and occurs at about 20–30 kbar in SmSe and SmTe, it is abrupt in SmS and requires only 6.5 kbar. This effect results in spectacular color change in SmS from black to golden yellow when its crystals of films are scratched or polished. The transition does not change lattice symmetry, but there is a sharp decrease (~15%) in the crystal volume.Beaurepaire, Eric (Ed.
''Magnetism: a synchrotron radiation approach''
Springer, 2006 p. 393
It exhibits
hysteresis Hysteresis is the dependence of the state of a system on its history. For example, a magnet may have more than one possible magnetic moment in a given magnetic field, depending on how the field changed in the past. Plots of a single component of ...
, i.e., when the pressure is released, SmS returns to the semiconducting state at a much lower pressure of about 0.4 kbar.


Halides

Samarium metal reacts with all the
halogen The halogens () are a group in the periodic table consisting of five or six chemically related elements: fluorine (F), chlorine (Cl), bromine (Br), iodine (I), astatine (At), and tennessine (Ts). In the modern IUPAC nomenclature, this group is ...
s, forming trihalides:
Greenwood Green wood is unseasoned wood. Greenwood or Green wood may also refer to: People * Greenwood (surname) Settlements Australia * Greenwood, Queensland, a locality in the Toowoomba Region * Greenwood, Western Australia, a suburb of Perth C ...
, pp. 1236, 1241
:2 Sm (s) + 3 X2 (g) → 2 SmX3 (s) (X = F, Cl, Br or I) Their further reduction with samarium, lithium or sodium metals at elevated temperatures (about 700–900 °C) yields dihalides. The diiodide can also be prepared by heating SmI3, or by reacting the metal with
1,2-diiodoethane 1,2-Diiodoethane is an organoiodine compound. Preparation and reactions 1,2-Diiodoethane can be prepared by the reaction of ethylene with iodine (I): :CH + I CHI 1,2-Diiodoethane is most commonly used in organic synthesis in the preparation ...
in anhydrous
tetrahydrofuran Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is ma ...
at room temperature:
Greenwood Green wood is unseasoned wood. Greenwood or Green wood may also refer to: People * Greenwood (surname) Settlements Australia * Greenwood, Queensland, a locality in the Toowoomba Region * Greenwood, Western Australia, a suburb of Perth C ...
, p. 1240
:Sm (s) + ICH2-CH2I → SmI2 + CH2=CH2. In addition to dihalides, the reduction also produces many
non-stoichiometric In chemistry, non-stoichiometric compounds are chemical compounds, almost always solid inorganic compounds, having elemental composition whose proportions cannot be represented by a ratio of small natural numbers (i.e. an empirical formula); mos ...
samarium halides with a well-defined crystal structure, such as Sm3F7, Sm14F33, Sm27F64, Sm11Br24, Sm5Br11 and Sm6Br13. As reflected in the table above, samarium halides change their crystal structures when one type of halide atom is substituted for another, which is an uncommon behavior for most elements (e.g. actinides). Many halides have two major crystal phases for one composition, one being significantly more stable and another being metastable. The latter is formed upon compression or heating, followed by quenching to ambient conditions. For example, compressing the usual monoclinic samarium diiodide and releasing the pressure results in a PbCl2-type orthorhombic structure (density 5.90 g/cm3), and similar treatment results in a new phase of samarium triiodide (density 5.97 g/cm3).


Borides

Sintering Clinker nodules produced by sintering Sintering or frittage is the process of compacting and forming a solid mass of material by pressure or heat without melting it to the point of liquefaction. Sintering happens as part of a manufacturing ...
powders of samarium oxide and boron, in vacuum, yields a powder containing several samarium boride phases, and their volume ratio can be controlled through the mixing proportion. The powder can be converted into larger crystals of a certain samarium boride using arc melting or
zone melting Zone melting (or zone refining, or floating-zone method, or floating-zone technique) is a group of similar methods of purifying crystals, in which a narrow region of a crystal is melted, and this molten zone is moved along the crystal. The molte ...
techniques, relying on the different melting/crystallization temperature of SmB6 (2580 °C), SmB4 (about 2300 °C) and SmB66 (2150 °C). All these materials are hard, brittle, dark-gray solids with the hardness increasing with the boron content. Samarium diboride is too volatile to be produced with these methods and requires high pressure (about 65 kbar) and low temperatures between 1140 and 1240 °C to stabilize its growth. Increasing the temperature results in the preferential formations of SmB6.


Samarium hexaboride

Samarium hexaboride is a typical intermediate-valence compound where samarium is present both as Sm2+ and Sm3+ ions in a 3:7 ratio. It belongs to a class of
Kondo insulator In solid-state physics, Kondo insulators (also referred as Kondo semiconductors and heavy fermion semiconductors) are understood as materials with strongly correlated electrons, that open up a narrow band gap (in the order of 10 meV) at low tem ...
s, that is at high temperatures (above 50 K), its properties are typical of a Kondo metal, with metallic electrical conductivity characterized by strong electron scattering, whereas at low temperatures, it behaves as a non-magnetic insulator with a narrow
band gap In solid-state physics, a band gap, also called an energy gap, is an energy range in a solid where no electronic states can exist. In graphs of the electronic band structure of solids, the band gap generally refers to the energy difference (in ...
of about 4–14 meV. The cooling-induced metal-insulator transition in SmB6 is accompanied by a sharp increase in the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
, peaking at about 15 K. The reason for this increase is that electrons themselves do not contribute to the thermal conductivity at low temperatures, which is dominated by
phonon In physics, a phonon is a collective excitation in a periodic, Elasticity (physics), elastic arrangement of atoms or molecules in condensed matter physics, condensed matter, specifically in solids and some liquids. A type of quasiparticle, a phon ...
s, but the decrease in electron concentration reduced the rate of electron-phonon scattering. New research seems to show that it may be a
topological insulator A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material. A topological insulator is an ...
.


Other inorganic compounds

Samarium
carbide In chemistry, a carbide usually describes a compound composed of carbon and a metal. In metallurgy, carbiding or carburizing is the process for producing carbide coatings on a metal piece. Interstitial / Metallic carbides The carbides of the ...
s are prepared by melting a graphite-metal mixture in an inert atmosphere. After the synthesis, they are unstable in air and are studied also under inert atmosphere. Samarium monophosphide SmP is a
semiconductor A semiconductor is a material which has an electrical resistivity and conductivity, electrical conductivity value falling between that of a electrical conductor, conductor, such as copper, and an insulator (electricity), insulator, such as glas ...
with the bandgap of 1.10 eV, the same as in
silicon Silicon is a chemical element with the symbol Si and atomic number 14. It is a hard, brittle crystalline solid with a blue-grey metallic luster, and is a tetravalent metalloid and semiconductor. It is a member of group 14 in the periodic tab ...
, and high electrical conductivity of n-type. It can be prepared by annealing at 1100 °C an evacuated quartz ampoule containing mixed powders of phosphorus and samarium. Phosphorus is highly volatile at high temperatures and may explode, thus the heating rate has to be kept well below 1 °C/min. Similar procedure is adopted for the monarsenide SmAs, but the synthesis temperature is higher at 1800 °C. Numerous crystalline binary compounds are known for samarium and one of the group-14, 15 or 16 element X, where X is Si, Ge, Sn, Pb, Sb or Te, and metallic alloys of samarium form another large group. They are all prepared by annealing mixed powders of the corresponding elements. Many of the resulting compounds are non-stoichiometric and have nominal compositions SmaXb, where the b/a ratio varies between 0.5 and 3.


Organometallic compounds

Samarium forms a
cyclopentadienide In chemistry, the cyclopentadienyl anion or cyclopentadienide is an aromatic species with a formula of and abbreviated as Cp−. It is formed from the deprotonation of the molecule cyclopentadiene. Properties The cyclopentadienyl anion ...
and its chloroderivatives and . They are prepared by reacting samarium trichloride with in
tetrahydrofuran Tetrahydrofuran (THF), or oxolane, is an organic compound with the formula (CH2)4O. The compound is classified as heterocyclic compound, specifically a cyclic ether. It is a colorless, water-miscible organic liquid with low viscosity. It is ma ...
. Contrary to cyclopentadienides of most other lanthanides, in some rings bridge each other by forming ring vertexes η1 or edges η2 toward another neighboring samarium, thus creating polymeric chains. The chloroderivative has a dimer structure, which is more accurately expressed as . There, the chlorine bridges can be replaced, for instance, by iodine, hydrogen or nitrogen atoms or by CN groups.
Greenwood Green wood is unseasoned wood. Greenwood or Green wood may also refer to: People * Greenwood (surname) Settlements Australia * Greenwood, Queensland, a locality in the Toowoomba Region * Greenwood, Western Australia, a suburb of Perth C ...
, p. 1249
The () ion in samarium cyclopentadienides can be replaced by the indenide () or
cyclooctatetraenide 1,3,5,7-Cyclooctatetraene (COT) is an unsaturated derivative of cyclooctane, with the formula C8H8. It is also known as nnulene. This polyunsaturated hydrocarbon is a colorless to light yellow flammable liquid at room temperature. Because of ...
()2− ring, resulting in or . The latter compound has a structure similar to
uranocene Uranocene, U(C8H8)2, is an organouranium compound composed of a uranium atom sandwiched between two cyclooctatetraenide rings. It was one of the first organoactinide compounds to be synthesized. It is a green air-sensitive solid that dissolves in ...
. There is also a cyclopentadienide of divalent samarium, 2− a solid that sublimates at about 85 °C. Contrary to
ferrocene Ferrocene is an organometallic compound with the formula . The molecule is a complex consisting of two cyclopentadienyl rings bound to a central iron atom. It is an orange solid with a camphor-like odor, that sublimes above room temperature, a ...
, the rings in are not parallel but are tilted by 40°. A metathesis reaction in tetrahydrofuran or
ether In organic chemistry, ethers are a class of compounds that contain an ether group—an oxygen atom connected to two alkyl or aryl groups. They have the general formula , where R and R′ represent the alkyl or aryl groups. Ethers can again be c ...
gives
alkyl In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term ''alkyl'' is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of . A cycloalkyl is derived from a cycloalk ...
s and
aryl In organic chemistry, an aryl is any functional group or substituent derived from an aromatic ring, usually an aromatic hydrocarbon, such as phenyl and naphthyl. "Aryl" is used for the sake of abbreviation or generalization, and "Ar" is used as ...
s of samarium: : : Here R is a hydrocarbon group and Me =
methyl In organic chemistry, a methyl group is an alkyl derived from methane, containing one carbon atom bonded to three hydrogen atoms, having chemical formula . In formulas, the group is often abbreviated as Me. This hydrocarbon group occurs in many ...
.


Isotopes

Naturally occurring samarium is composed of five stable
isotope Isotopes are two or more types of atoms that have the same atomic number (number of protons in their nuclei) and position in the periodic table (and hence belong to the same chemical element), and that differ in nucleon numbers (mass numbers) ...
s: 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived
radioisotope A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
s, 147Sm (half-life ''t''1/2 = 1.06 years) and 148Sm (7 years), with 152Sm being the most abundant ( 26.75%). 149Sm is listed by various sources either as stable or radioactive, but only a lower bound for its half-life is given. Some
observationally stable Stable nuclides are nuclides that are not radioactive and so (unlike radionuclides) do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes. Th ...
samarium isotopes are predicted to decay to
isotopes of neodymium Naturally occurring neodymium (60Nd) is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 long-lived radioisotopes, 144Nd and 150Nd. In all, 33 radioisotopes of ...
. The long-lived isotopes 146Sm, 147Sm, and 148Sm, primarily
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atom ...
to
neodymium Neodymium is a chemical element with the symbol Nd and atomic number 60. It is the fourth member of the lanthanide series and is considered to be one of the rare-earth metals. It is a hard, slightly malleable, silvery metal that quickly tarnishes i ...
. Lighter unstable isotopes of samarium mainly decay by
electron capture Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shells. Thi ...
to
promethium Promethium is a chemical element with the symbol Pm and atomic number 61. All of its isotopes are radioactive; it is extremely rare, with only about 500–600 grams naturally occurring in Earth's crust at any given time. Promethium is one of onl ...
, while heavier ones
beta decay In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which a beta particle (fast energetic electron or positron) is emitted from an atomic nucleus, transforming the original nuclide to an isobar of that nuclide. For ...
to
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
. Natural samarium has a radioactivity of 127  Bq/g, mostly due to 147Sm. 146Sm can be used as an
extinct radionuclide An extinct radionuclide is a radionuclide that was formed by nucleosynthesis before the formation of the Solar System, about 4.6 billion years ago, but has since decayed to virtually zero abundance and is no longer detectable as a primordial nucl ...
in radiometric dating. The
alpha decay Alpha decay or α-decay is a type of radioactive decay in which an atomic nucleus emits an alpha particle (helium nucleus) and thereby transforms or 'decays' into a different atomic nucleus, with a mass number that is reduced by four and an atom ...
of 147Sm to 143Nd with a
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
of 1.06 years is used in
samarium–neodymium dating Samarium–neodymium dating is a radiometric dating method useful for determining the ages of rocks and meteorites, based on the alpha decay of the long-lived samarium isotope () to the stable radiogenic neodymium isotope (). Neodymium isotope rati ...
. The half-lives of 151Sm and 145Sm are 90 years and 340 days, respectively. All remaining
radioisotopes A radionuclide (radioactive nuclide, radioisotope or radioactive isotope) is a nuclide that has excess nuclear energy, making it unstable. This excess energy can be used in one of three ways: emitted from the nucleus as gamma radiation; transferr ...
, which range from 128Sm to 168Sm, have half-lives that are less than 2 days, and most these have half-life less than 48 seconds. Samarium also has twelve known
nuclear isomer A nuclear isomer is a metastable state of an atomic nucleus, in which one or more nucleons (protons or neutrons) occupy excited state, higher energy levels than in the ground state of the same nucleus. "Metastable" describes nuclei whose excited ...
s, the most stable of which are 141mSm (
half-life Half-life (symbol ) is the time required for a quantity (of substance) to reduce to half of its initial value. The term is commonly used in nuclear physics to describe how quickly unstable atoms undergo radioactive decay or how long stable ato ...
22.6 minutes), 143m1Sm (''t''1/2 = 66 seconds), and 139mSm (''t''1/2 = 10.7 seconds).


History

Detection of samarium and related elements was announced by several scientists in the second half of the 19th century; however, most sources give priority to
French French (french: français(e), link=no) may refer to: * Something of, from, or related to France ** French language, which originated in France, and its various dialects and accents ** French people, a nation and ethnic group identified with Franc ...
chemist
Paul-Émile Lecoq de Boisbaudran Paul-Émile Lecoq de Boisbaudran, also called François Lecoq de Boisbaudran (18 April 1838 – 28 May 1912), was a French chemist known for his discoveries of the chemical elements gallium, samarium and dysprosium. He developed methods for s ...
.Samarium
Encyclopædia Britannica on-line
Boisbaudran isolated samarium oxide and/or hydroxide in
Paris Paris () is the capital and most populous city of France, with an estimated population of 2,165,423 residents in 2019 in an area of more than 105 km² (41 sq mi), making it the 30th most densely populated city in the world in 2020. S ...
in 1879 from the mineral
samarskite Samarskite is a radioactive rare earth mineral series which includes samarskite-(Y), with the chemical formula and samarskite-(Yb), with the chemical formula . The formula for samarskite-(Y) is also given as . Samarskite crystallizes in the orth ...
) and identified a new element in it via sharp optical absorption lines. Swiss chemist
Marc Delafontaine Marc Delafontaine (March 31, 1837/1838, Céligny, Switzerland–1911) was a Swiss chemist and spectroscopist who was involved in discovering and investigating some of the rare earth elements. Career Delafontaine studied with Jean Charles Galis ...
announced a new element ''
decipium Decipium was the proposed name for a new chemical element isolated by Marc Delafontaine from the mineral samarskite. He published his discovery in 1878 and later published a follow-up paper in 1881. Decipium was considered to be in the cerium gro ...
'' (from la, decipiens meaning "deceptive, misleading") in 1878, but later in 1880–1881 demonstrated that it was a mix of several elements, one being identical to Boisbaudran's samarium. Though samarskite was first found in the remote Russian region of
Urals The Ural Mountains ( ; rus, Ура́льские го́ры, r=Uralskiye gory, p=ʊˈralʲskʲɪjə ˈɡorɨ; ba, Урал тауҙары) or simply the Urals, are a mountain range that runs approximately from north to south through European ...
, by the late 1870s it had been found in other places, making it available to many researchers. In particular, it was found that the samarium isolated by Boisbaudran was also impure and had a comparable amount of
europium Europium is a chemical element with the symbol Eu and atomic number 63. Europium is the most reactive lanthanide by far, having to be stored under an inert fluid to protect it from atmospheric oxygen or moisture. Europium is also the softest lanth ...
. The pure element was produced only in 1901 by
Eugène-Anatole Demarçay Eugène-Anatole Demarçay (1 January 1852 – 5 March 1903) was a French chemist who designed an apparatus to produce a spark using an induction coil and used it to generate the spectra of Rare-earth element, rare earth elements which he examin ...
. Boisbaudran named his element ''samaria'' after the mineral samarskite, which in turn honored
Vassili Samarsky-Bykhovets Vasili Yevgrafovich Samarsky-Bykhovets (russian: Василий Евграфович Самарский-Быховец; 7 November 1803 – 31 May 1870) was a Russian mining engineer and the chief of Russian Mining Engineering Corps between 1845 an ...
(1803–1870). Samarsky-Bykhovets, as the Chief of Staff of the
Russia Russia (, , ), or the Russian Federation, is a List of transcontinental countries, transcontinental country spanning Eastern Europe and North Asia, Northern Asia. It is the List of countries and dependencies by area, largest country in the ...
n Corps of Mining Engineers, had granted access for two German mineralogists, the brothers
Gustav Gustav, Gustaf or Gustave may refer to: *Gustav (name), a male given name of Old Swedish origin Art, entertainment, and media * ''Primeval'' (film), a 2007 American horror film * ''Gustav'' (film series), a Hungarian series of animated short cart ...
and
Heinrich Rose Heinrich Rose (6 August 1795 – 27 January 1864) was a German mineralogist and analytical chemist. He was the brother of the mineralogist Gustav Rose and a son of Valentin Rose. Rose's early works on phosphorescence were noted in the Quarter ...
, to study the mineral samples from the Urals.Samarskite
Great Soviet Encyclopedia The ''Great Soviet Encyclopedia'' (GSE; ) is one of the largest Russian-language encyclopedias, published in the Soviet Union from 1926 to 1990. After 2002, the encyclopedia's data was partially included into the later ''Bolshaya rossiyskaya e ...
(in Russian)
Samarium was thus the first chemical element to be named after a person. Later the name ''samaria'' used by Boisbaudran became ''samarium'', to conform with other element names. Samaria is now sometimes used to mean samarium oxide, by analogy with yttria, zirconia, alumina, ceria, Holmium(III) oxide, holmia, etc. The symbol ''Sm'' was suggested for samarium, but an alternative ''Sa'' was often used instead until the 1920s.Samarium: History & Etymology
Elements.vanderkrogt.net. Retrieved on 2013-03-21.
Before the advent of ion-exchange separation technology in the 1950s, pure samarium had no commercial uses. However, a by-product of fractional crystallization purification of neodymium was a mix of samarium and gadolinium that got the name "Lindsay Mix" after the company that made it. This material is thought to have been used for nuclear
control rod Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing ...
s in some early nuclear reactors. Nowadays, a similar commodity product has the name "samarium-europium-gadolinium" (SEG) concentrate.Chemistry in Its Element – Samarium
, Royal Society of Chemistry
It is prepared by solvent extraction from the mixed
lanthanide The lanthanide () or lanthanoid () series of chemical elements comprises the 15 metallic chemical elements with atomic numbers 57–71, from lanthanum through lutetium. These elements, along with the chemically similar elements scandium and yttr ...
s isolated from bastnäsite (or monazite). Since heavier lanthanides have more affinity for the solvent used, they are easily extracted from the bulk using relatively small proportions of solvent. Not all rare-earth producers who process bastnäsite do so on a large enough scale to continue by separating the components of SEG, which typically makes up only 1-2% of the original ore. Such producers therefore make SEG with a view to marketing it to the specialized processors. In this manner, the valuable europium in the ore is rescued for use in making phosphor. Samarium purification follows the removal of the europium. , being in oversupply, samarium oxide is cheaper on a commercial scale than its relative abundance in the ore might suggest.


Occurrence and production

With the average concentration of about 8 parts per million (ppm), samarium is the 40th most abundant element in the Earth's crust. It is the fifth most abundant lanthanide and is more common than elements such as tin. Samarium concentration in soils varies between 2 and 23 ppm, and oceans contain about 0.5–0.8 parts per trillion. Distribution of samarium in soils strongly depends on its chemical state and is very inhomogeneous: in sandy soils, samarium concentration is about 200 times higher at the surface of soil particles than in the water trapped between them, and this ratio can exceed 1,000 in clays. Samarium is not found free in nature, but, like other rare earth elements, is contained in many minerals, including
monazite Monazite is a primarily reddish-brown phosphate mineral that contains rare-earth elements. Due to variability in composition, monazite is considered a group of minerals. The most common species of the group is monazite-(Ce), that is, the cerium- ...
,
bastnäsite The mineral bastnäsite (or bastnaesite) is one of a family of three carbonate-fluoride minerals, which includes bastnäsite-( Ce) with a formula of (Ce, La)CO3F, bastnäsite-( La) with a formula of (La, Ce)CO3F, and bastnäsite-( Y) with a formul ...
,
cerite Cerite is a complex silicate mineral group containing cerium, formula .http://rruff.geo.arizona.edu/doclib/hom/ceritece.pdf Handbook of Mineralogy The cerium and lanthanum content varies with the Ce rich species (cerite-(Ce)) and the La rich speci ...
,
gadolinite Gadolinite, sometimes known as ytterbite, is a silicate mineral consisting principally of the silicates of cerium, lanthanum, neodymium, yttrium, beryllium, and iron with the formula . It is called gadolinite-(Ce) or gadolinite-(Y), depending on ...
and
samarskite Samarskite is a radioactive rare earth mineral series which includes samarskite-(Y), with the chemical formula and samarskite-(Yb), with the chemical formula . The formula for samarskite-(Y) is also given as . Samarskite crystallizes in the orth ...
; monazite (in which samarium occurs at concentrations of up to 2.8%) and bastnäsite are mostly used as commercial sources. World resources of samarium are estimated at two million tonnes; they are mostly located in China, US, Brazil, India, Sri Lanka and Australia, and the annual production is about 700 tonnes. Country production reports are usually given for all rare-earth metals combined. By far, China has the largest production with 120,000 tonnes mined per year; it is followed by the US (about 5,000 tonnes) and India (2,700 tonnes). Samarium is usually sold as oxide, which at the price of about US$30/kg is one of the cheapest lanthanide oxides.What are their prices?
Lynas corp.
Whereas mischmetal – a mixture of rare earth metals containing about 1% of samarium – has long been used, relatively pure samarium has been isolated only recently, through ion exchange processes, solvent extraction techniques, and electrochemical deposition. The metal is often prepared by electrolysis of a molten mixture of samarium(III) chloride with sodium chloride or calcium chloride. Samarium can also be obtained by reducing its oxide with lanthanum. The product is then distilled to separate samarium (boiling point 1794 °C) and lanthanum (b.p. 3464 °C). Domination of samarium in minerals is unique. Minerals with essential (dominant) samarium include monazite-(Sm) and florencite-(Sm). They are very rare. Samarium-151 is produced in nuclear fission of uranium with a yield of about 0.4% of all fissions. It is also made by neutron capture by samarium-149, which is added to the
control rod Control rods are used in nuclear reactors to control the rate of fission of the nuclear fuel – uranium or plutonium. Their compositions include chemical elements such as boron, cadmium, silver, hafnium, or indium, that are capable of absorbing ...
s of nuclear reactors. Therefore, Sm is present in spent nuclear fuel and radioactive waste.


Applications

One of the most important uses of samarium is
samarium–cobalt magnet A samarium–cobalt (SmCo) magnet, a type of rare-earth magnet, is a strong permanent magnet made of two basic elements: samarium and cobalt. They were developed in the early 1960s based on work done by Karl Strnat at Wright-Patterson Air Force Ba ...
s, which are nominally or . They have high permanent magnetization, about 10,000 times that of iron and second only to
neodymium magnet A hard_disk_drive.html"_;"title="Nickel-plated_neodymium_magnet_on_a_bracket_from_a_hard_disk_drive">Nickel-plated_neodymium_magnet_on_a_bracket_from_a_hard_disk_drive_ file:Nd-magnet.jpg.html" ;"title="hard_disk_drive_.html" ;"title="hard_disk_d ...
s. However, samarium magnets resist demagnetization better; they are stable to temperatures above 700 °C (cf. 300–400 °C for neodymium magnets). These magnets are found in small motors, headphones, and high-end magnetic Pick up (music technology), pickups for guitars and related musical instruments. For example, they are used in the motors of a solar power, solar-powered electric aircraft, the Solar Challenger, and in the Vintage Noiseless, Samarium Cobalt Noiseless electric guitar and bass pickups. Another important use of samarium and its compounds is as catalyst and chemical reagent. Samarium catalysts help decomposition of plastics, dechlorination of pollutants such as polychlorinated biphenyls (PCB), as well as dehydration and dehydrogenation of ethanol. Lanthanide trifluoromethanesulfonates, Samarium(III) triflate , that is , is one of the most efficient Lewis acid catalysts for a halogen-promoted Friedel–Crafts reaction with alkenes. Samarium(II) iodide is a very common reducing and coupling agent in organic synthesis, for example in desulfonylation reactions; annulation; Danishefsky Taxol total synthesis, Danishefsky, Kuwajima Taxol total synthesis, Kuwajima, Mukaiyama Taxol total synthesis, Mukaiyama and Holton Taxol total synthesis, Holton Taxol total syntheses; strychnine total synthesis; Barbier reaction and other reductions with samarium(II) iodide. In its usual oxidized form, samarium is added to ceramics and glasses where it increases absorption of infrared light. As a (minor) part of mischmetal, samarium is found in "flint" ignition device of many lighters and torches. Samarium-153 is a beta emitter with half-life 46.3 hours. It is used to kill cancer cells in
lung cancer Lung cancer, also known as lung carcinoma (since about 98–99% of all lung cancers are carcinomas), is a malignant lung tumor characterized by uncontrolled cell growth in tissue (biology), tissues of the lung. Lung carcinomas derive from tran ...
,
prostate cancer Prostate cancer is cancer of the prostate. Prostate cancer is the second most common cancerous tumor worldwide and is the fifth leading cause of cancer-related mortality among men. The prostate is a gland in the male reproductive system that sur ...
,
breast cancer Breast cancer is cancer that develops from breast tissue. Signs of breast cancer may include a lump in the breast, a change in breast shape, dimpling of the skin, milk rejection, fluid coming from the nipple, a newly inverted nipple, or a re ...
, and
osteosarcoma An osteosarcoma (OS) or osteogenic sarcoma (OGS) (or simply bone cancer) is a cancerous tumor in a bone. Specifically, it is an aggressive malignant neoplasm that arises from primitive transformed cells of mesenchymal origin (and thus a sarcoma) a ...
. For this purpose, samarium-153 is Chelation, chelated with ethylene diamine tetramethylene phosphonate (EDTMP) and injected intravenously. The chelation prevents accumulation of radioactive samarium in the body that would result in excessive irradiation and generation of new cancer cells. The corresponding drug has several names including samarium (153Sm) lexidronam; its trade name is Quadramet. Samarium-149 has a high cross-section for neutron capture (41,000 barn (unit), barns) and so is used in control rods of
nuclear reactor A nuclear reactor is a device used to initiate and control a fission nuclear chain reaction or nuclear fusion reactions. Nuclear reactors are used at nuclear power plants for electricity generation and in nuclear marine propulsion. Heat from nu ...
s. Its advantage compared to competing materials, such as boron and cadmium, is stability of absorption – most of the fusion products of Sm are other isotopes of samarium that are also good neutron absorbers. For example, the cross section of samarium-151 is 15,000 barns, it is on the order of hundreds of barns for Sm, Sm, and Sm, and 6,800 barns for natural (mixed-isotope) samarium. Among the decay products in a nuclear reactor, Sm is regarded as the second most important for the reactor design and operation after xenon-135. Samarium hexaboride, , has recently been shown to be a
topological insulator A topological insulator is a material whose interior behaves as an electrical insulator while its surface behaves as an electrical conductor, meaning that electrons can only move along the surface of the material. A topological insulator is an ...
with potential uses in quantum computing.


Non-commercial and potential uses

Samarium-doped calcium fluoride crystals were used as an active medium in one of the first solid-state lasers designed and built by Peter Sorokin (co-inventor of the dye laser) and Mirek Stevenson at IBM research labs in early 1961. This samarium laser gave pulses of red light at 708.5 nm. It had to be cooled by liquid helium and so did not find practical applications. Another samarium-based laser became the first saturated
X-ray laser An X-ray laser is a device that uses stimulated emission to generate or amplify electromagnetic radiation in the near X-ray or extreme ultraviolet region of the spectrum, that is, usually on the order of several tens of nanometers (nm) wavelength ...
operating at wavelengths shorter than 10 nanometers. It gave 50-picosecond pulses at 7.3 and 6.8 nm suitable for uses in holography, high-resolution microscopy of biological specimens, deflectometry, interferometry, and radiography of dense plasmas related to confinement fusion and astrophysics. Saturated operation meant that the maximum possible power was extracted from the lasing medium, resulting in the high peak energy of 0.3 mJ. The active medium was samarium plasma produced by irradiating samarium-coated glass with a pulsed infrared Nd:YAG laser, Nd-glass laser (wavelength ~1.05 μm). The change in electrical resistivity in samarium monochalcogenides can be used in a pressure sensor or in a memory device triggered between a low-resistance and high-resistance state by external pressure, and such devices are being developed commercially. Samarium monosulfide also generates electric voltage upon moderate heating to about 150 °C that can be applied in Thermoelectric generator, thermoelectric power converters. Analysis of relative concentrations of samarium and neodymium isotopes Sm, Nd, and Nd allows determination of age and origin of rocks and meteorites in
samarium–neodymium dating Samarium–neodymium dating is a radiometric dating method useful for determining the ages of rocks and meteorites, based on the alpha decay of the long-lived samarium isotope () to the stable radiogenic neodymium isotope (). Neodymium isotope rati ...
. Both elements are lanthanides and are very similar physically and chemically. Thus, Sm–Nd dating is either insensitive to partitioning of the marker elements during various geologic processes, or such partitioning can well be understood and modeled from the ionic radius, ionic radii of said elements. Sm ion is a potential Activator (phosphor), activator for use in warm-white light emitting diodes. It offers high luminous efficacy due to the narrow emission bands; but the generally low quantum efficiency and too little absorption in the Ultraviolet#Subtypes, UV-A to blue spectral region hinders commercial application. In recent years it has been shown that nanocrystalline BaFCl:Sm as prepared by co-precipitation can serve as a very efficient x-ray storage phosphor. The co-precipitation leads to nanocrystallites of the order of 100-200 nm in size and their sensitivity as x-ray storage phosphors is increased an astounding ∼500,000 times because of the specific arrangements and density of defect centers in comparison with microcrystalline samples prepared by sintering at high temperature. The mechanism is based on reduction of Sm to Sm by trapping electrons that are created upon exposure to ionizing radiation in the BaFCl host. The D- F f-f luminescence lines can be very efficiently excited via the parity allowed 4f →4f 5d transition at ~417 nm. The latter wavelength is ideal for efficient excitation by blue-violet laser diodes as the transition is electric dipole allowed and thus relatively intense (400 L/(mol⋅cm)). The phosphor has potential applications in personal dosimetry, dosimetry and imaging in radiotherapy, and medical imaging. Samarium is used for ionosphere testing. A rocket spreads it as a red vapor at high altitude, and researchers tests how the atmosphere disperses it and how it impacts radio transmissions.


Biological role and precautions

Samarium salts stimulate metabolism, but it is unclear whether this is from samarium or other lanthanides present with it. The total amount of samarium in adults is about 50 microgram, μg, mostly in liver and kidneys and with ~8 μg/L being dissolved in blood. Samarium is not absorbed by plants to a measurable concentration and so is normally not part of human diet. However, a few plants and vegetables may contain up to 1 part per million of samarium. Insoluble salts of samarium are non-toxic and the soluble ones are only slightly toxic. When ingested, only ~0.05% of samarium salts is absorbed into the bloodstream and the remainder is excreted. From the blood, ~45% goes to the liver and 45% is deposited on the surface of the bones where it remains for ~10 years; the balance 10% is excreted.Human Health Fact Sheet on Samarium
, Los Alamos National Laboratory


References


Bibliography

*


External links

*
Reducing Agents > Samarium low valent
{{Authority control Samarium, Chemical elements Chemical elements with rhombohedral structure Lanthanides Reducing agents