Salt Surface Structures
   HOME

TheInfoList



OR:

Salt surface structures are extensions of
salt tectonics upright=1.7 Salt tectonics, or halokinesis, or halotectonics, is concerned with the geometries and processes associated with the presence of significant thicknesses of evaporites containing rock salt within a stratigraphic sequence of rocks. This ...
that form at the Earth's surface when either
diapir A diapir (; , ) is a type of igneous intrusion in which a more mobile and ductily deformable material is forced into brittle overlying rocks. Depending on the tectonic environment, diapirs can range from idealized mushroom-shaped Rayleigh–T ...
s or salt sheets pierce through the overlying
strata In geology and related fields, a stratum ( : strata) is a layer of rock or sediment characterized by certain lithologic properties or attributes that distinguish it from adjacent layers from which it is separated by visible surfaces known as ei ...
. They can occur in any location where there are salt deposits, namely in cratonic basins, synrift basins,
passive margin A passive margin is the transition between oceanic and continental lithosphere that is not an active plate margin. A passive margin forms by sedimentation above an ancient rift, now marked by transitional lithosphere. Continental rifting creat ...
s and collisional margins. These are environments where mass quantities of water collect and then evaporate; leaving behind salt and other
evaporite An evaporite () is a water-soluble sedimentary mineral deposit that results from concentration and crystallization by evaporation from an aqueous solution. There are two types of evaporite deposits: marine, which can also be described as ocea ...
s to form sedimentary beds. When there is a difference in pressure, such as additional sediment in a particular area, the salt beds – due to the unique ability of salt to behave as a fluid under pressure – form into new structures. Sometimes, these new bodies form subhorizontal or moderately dipping structures over a younger stratigraphic unit, which are called allochthonous salt bodies or salt surface structures.


Salt


Tectonic environments

Four key environments can facilitate salt deposition. These places allow salt-bearing water to collect and evaporate, leaving behind bedded deposits of solidified salt crystals. Below are short descriptions of these environments and a few examples. # Convergent boundaries – Areas where two plates collide; if there is water trapped between the two, there is the possibility of evaporation and deposition. The
Mediterranean Sea The Mediterranean Sea is a sea connected to the Atlantic Ocean, surrounded by the Mediterranean Basin and almost completely enclosed by land: on the north by Western and Southern Europe and Anatolia, on the south by North Africa, and on the ea ...
, particularly during the
Messinian salinity crisis The Messinian salinity crisis (MSC), also referred to as the Messinian event, and in its latest stage as the Lago Mare event, was a geological event during which the Mediterranean Sea went into a cycle of partial or nearly complete desiccation (dr ...
, is a prime example. # Rifted boundaries/passive margins – Also known as divergent boundaries, these areas begin as
rift In geology, a rift is a linear zone where the lithosphere is being pulled apart and is an example of extensional tectonics. Typical rift features are a central linear downfaulted depression, called a graben, or more commonly a half-grabe ...
basins, where extension is pulling apart the crust. If this rifting allows water to flood the resulting valley, salt deposition can occur. Examples include the
Campos Basin The Campos Basin is one of 12 coastal sedimentary basins of Brazil. It spans both onshore and offshore parts of the South Atlantic with the onshore part located near Rio de Janeiro. The basin originated in Neocomian stage of the Cretaceous period ...
, Brazil, Kwanza Basin, West Africa, and the
Gulf of Mexico The Gulf of Mexico ( es, Golfo de México) is an oceanic basin, ocean basin and a marginal sea of the Atlantic Ocean, largely surrounded by the North American continent. It is bounded on the northeast, north and northwest by the Gulf Coast of ...
. # Cratonic basins – Within continental boundaries, salt deposition can occur anywhere that bodies of water can collect. Even away from ocean sources, water is capable of dissolving and carrying ions that can later precipitate as salts, and when the water evaporates, the salts are left behind. Examples of these basins are the South Oman Salt Basin and the
Michigan Basin The Michigan Basin is a geologic basin centered on the Lower Peninsula of the U.S. state of Michigan. The feature is represented by a nearly circular pattern of geologic sedimentary strata in the area with a nearly uniform structural dip toward ...
. In the past, there was a great shallow sea covering most of the
Great Plains The Great Plains (french: Grandes Plaines), sometimes simply "the Plains", is a broad expanse of flatland in North America. It is located west of the Mississippi River and east of the Rocky Mountains, much of it covered in prairie, steppe, an ...
region of the United States; when this sea dried up, it created the Strataca deposit now mined in
Kansas Kansas () is a state in the Midwestern United States. Its capital is Topeka, and its largest city is Wichita. Kansas is a landlocked state bordered by Nebraska to the north; Missouri to the east; Oklahoma to the south; and Colorado to the ...
, among others.


Characteristics

Salt has two key characteristics that make it unique in a tectonic setting, and important economically. The first is that salt (and other evaporites) deform plastically over geologic time, and thus behaves as a fluid rather than a rigid structure. This allows structures with salt components to deform more easily and have a slightly different appearance. Take, for example the
Appalachians The Appalachian Mountains, often called the Appalachians, (french: Appalaches), are a system of mountains in eastern to northeastern North America. The Appalachians first formed roughly 480 million years ago during the Ordovician Period. They ...
, which contain some salt deposits, and the
Rocky Mountains The Rocky Mountains, also known as the Rockies, are a major mountain range and the largest mountain system in North America. The Rocky Mountains stretch in straight-line distance from the northernmost part of western Canada, to New Mexico in ...
, which is an accretionary terrain with little to no salt. This also allows for the creation of structural traps for oil and gas, as well as metals which makes them sought after targets in industry. The second, which is the fact that evaporites are often less dense, or more
buoyant Buoyancy (), or upthrust, is an upward force exerted by a fluid that opposes the weight of a partially or fully immersed object. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus the pr ...
, than the surrounding rock, which aids in its mobility and creates a Rayleigh Taylor instability. This means that the less dense substance will find a way to rise through or away from the more dense one. In salt tectonics, this occurs in three ways; the first is differential loading, where the salt flows from an area of high pressure to lower pressure, the second is gravitational spreading, where the salt spreads out laterally under its own gravitational weight, the last is thermal convection, where warmer – and thus less dense – salt rises through colder and more dense salt. This is only seen in laboratory settings due to the unlikely occurrence of salt bodies with great enough temperature variance.


Evolution histories

In order for originally horizontal beds to form the allochthonous salts, they must first break free of their geological restraints. The first base structure can be formed in a combination of six ways: # Reactive piercement – a normal fault synrift relieves pressure above the salt layer. This causes the salt to flow into the area of lower pressure to maintain its equilibrium. # Active piercement – salt moves through sediments where there are no structures to take advantage of. # Erosional piercement – overlying sediments are eroded away, revealing the present
salt dome A salt dome is a type of structural dome formed when salt (or other evaporite minerals) intrudes into overlying rocks in a process known as diapirism. Salt domes can have unique surface and subsurface structures, and they can be discovered using ...
. # Thrust piercement – local thrust faults apply force to salt sheets which follow the path of least resistance up the footwall of the fault. # Ductile piercement – not so much a 'piercing' movement, but local differential pressure force the salt to rise through weaker overlying sediments. Occurs due to the Rayleigh-Taylor instability created by salt's low density. # Passive piercement – after the salt column has initially pierced the overlying sediments, the rate it rises matches or supersedes the growing sediment layers. From here there are three paths that a forming surface structure can take. Two stem from a diapir base, and the third from a sheet base. The sheet becomes a source-fed thrust, not unlike the thrust piercement, it takes advantage of local fault planes to rise. The difference between the two diapir bases, is that one, termed a plug-fed thrust, has a sediment cap over the top, preventing the salt from freely flowing until building pressure forces it through the cap; the other, a plug-fed extrusion, lacks the sediment cap and is allowed to flow freely.


Types of surface structures

Once the salt structure has reached the surface, it is termed one of four names; salt-wing intrusions, extrusive advance, open-toed advance or thrust advance. There is a certain level of transition between the four, as some process, such as the dissolution and removal of salt, deposition of new sediment, erosion and thrusting can shift the characteristics between them.


Salt-wing intrusions

Salt-wing intrusions are technically underground structures; found in shortening, or compressional, systems, they form radial salt wedges between detached bedding planes. However, the caps on them can be eroded away, revealing the salt and transforming it into an extrusive advance.


Extrusive advance

Extrusive advances begin once the diapir reaches the ground's surface and the salt is exposed. The salt then spreads from the feeder under gravitational pressure alone. This flowing has two consequences that form the structure. First, as the top of the salt flows faster than the bottom, there is a frontal roll along the leading edge. Second, the salt overrides any sediment being deposited at the same time, causing the feature to climb upsection and prograde. Over time, some of the salt is dissolved away, leaving a layer of impurities and other sediments behind, the thickness of this roof, or sediment cap, depends on the percentage of impurities in the salt and the sedimentation rate of the area.


Thrust advance

Thrust advances return to salt sheets as their primary base structure, and form because salt provides a weak detachment layer for faulting systems. When force is applied in such systems, the buried sheet will advance along the hanging wall. There are three driving processes in this type of advance; gravitational pressure of both the salt and overlying sediments, spreading of the margin and general plate tectonics.


Open-toed advance

Open-toed advances can either evolve from the dissolution of salts from an extrusive advance structure, or it could have evolved from a plug-fed thrust. They are partially buried advances where only the advancing edge, called the toe, is open to flow, which is controlled by a combination of gravitational forces and differential pressure of the overlying sediments. There are three described sediment roof types: synclinal basins – isolated patches of consolidated sediments, prograding roof – a growing sheet of sediments, and salt breakout – where the salt had to force its way through the overlying sediments.


References

{{Reflist, 30em Evaporite Landforms Structural geology