SYN2
   HOME

TheInfoList



OR:

Synapsin II is the collective name for synapsin IIa and synapsin IIb, two nearly identical phosphoproteins in the
synapsin The synapsins are a family of proteins that have long been implicated in the regulation of neurotransmitter release at synapses. Specifically, they are thought to be involved in regulating the number of synaptic vesicles available for release via ...
family that in humans are encoded by the ''SYN2''
gene In biology, the word gene (from , ; "... Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
. Synapsins associate as endogenous substrates to the surface of
synaptic vesicle In a neuron, synaptic vesicles (or neurotransmitter vesicles) store various neurotransmitters that are released at the synapse. The release is regulated by a voltage-dependent calcium channel. Vesicles are essential for propagating nerve impu ...
s and act as key modulators in
neurotransmitter A neurotransmitter is a signaling molecule secreted by a neuron to affect another cell across a synapse. The cell receiving the signal, any main body part or target cell, may be another neuron, but could also be a gland or muscle cell. Neur ...
release across the presynaptic membrane of
axon An axon (from Greek ἄξων ''áxōn'', axis), or nerve fiber (or nerve fibre: see spelling differences), is a long, slender projection of a nerve cell, or neuron, in vertebrates, that typically conducts electrical impulses known as action ...
al neurons in the nervous system.


Gene

Alternative splicing of the ''SYN2'' gene results in two transcripts. The '' TIMP4'' gene is located within an
intron An intron is any nucleotide sequence within a gene that is not expressed or operative in the final RNA product. The word ''intron'' is derived from the term ''intragenic region'', i.e. a region inside a gene."The notion of the cistron .e., gene ...
of this gene and is transcribed in the opposite direction.


Protein

Synapsin II is a member of the synapsin family. Synapsins encode neuronal phosphoproteins which associate with the cytoplasmic surface of synaptic vesicles. Family members are characterized by common
protein domain In molecular biology, a protein domain is a region of a protein's polypeptide chain that is self-stabilizing and that folds independently from the rest. Each domain forms a compact folded three-dimensional structure. Many proteins consist o ...
s, and they are implicated in synaptogenesis and the modulation of neurotransmitter release, suggesting a potential role in several neuropsychiatric diseases. This member of the synapsin family encodes a
neuron A neuron, neurone, or nerve cell is an membrane potential#Cell excitability, electrically excitable cell (biology), cell that communicates with other cells via specialized connections called synapses. The neuron is the main component of nervous ...
-specific phosphoprotein that selectively binds to small synaptic vesicles in the presynaptic nerve terminal. Synapsin II the collective name for two proteins, synapsin IIa and synapsin IIb, with synapsin IIa being the larger of the two
isoforms A protein isoform, or "protein variant", is a member of a set of highly similar proteins that originate from a single gene or gene family and are the result of genetic differences. While many perform the same or similar biological roles, some iso ...
. Their apparent molecular weights are 74,000 and 55,000 Da, per SDS gel electrophoresis. Synapsin II along with synapsin I comprise approximately 9% of the proteins in highly purified samples of synaptic vesicles.


Structure

Synapsin II shares common domains within its amino acid sequence with other phosphoproteins in the synapsin family. Sharing the same N-terminal, synapsin II diverges from synapsin I in its C-terminal domains. It is much shorter than synapsin I and is missing most of the elongated domains seen in synapsin I. Roughly 70% of the amino acid residues are common between the two synapsins, which share common phosphorylation sites in the overlapping regions based on the homologous domains. Domain A of this neural protein contains phosphorylation sites for cAMP-dependent protein kinase and calcium/calmodulin-dependent protein kinase I, and domain B has two
mitogen-activated protein kinase A mitogen-activated protein kinase (MAPK or MAP kinase) is a type of protein kinase that is specific to the amino acids serine and threonine (i.e., a serine/threonine-specific protein kinase). MAPKs are involved in directing cellular responses ...
phosphorylation sites. At its B domain, between amino acids 43 and 121, synapsin II binds to a protein component in the cytosolic surface membrane of synaptic vesicles, organelles in neurons which carry neurotransmitters.


Function

Synapsin II regulates synaptic function of neurons in the central and peripheral nervous system. Synapsin IIa is the only synapsin isoform of the six synapsin isoforms (synapsin I-III each with isoforms A and B), which has been shown to significantly reverse synaptic depression and have a restorative effect on the density of synaptic vesicles within synapsinless neurons. Because of its restorative effect, synapsin IIa is believed to play a fundamental role in synaptic vesicle mobilization and reserve pool regulation in presynaptic nerve terminals. Lack of synapsins altogether in neurons, leads to behavioral alterations as well as epileptic-type seizures. The lack affects nervous signal transduction across excitatory and inhibitory synapses of neurons differently and is believed to be synapse-specific. Initial signal transduction appears to be unaffected by the lack of synapsins, but repeated stimulation of cultured synapsinless hippocampal neurons subsequently showed depressed responses at the excitatory synapse. At the inhibitory synapse, base signal transduction is reduced in neurons lacking pre-existing synapsins, but the reduced level of transduction is less affected by progressive stimulation. However, the restoration of synapsin IIa to neurons without pre-existing synapsins, can partially recover presumably lost signal transduction and slow the depression of synaptic response with progressive stimulation. Its isoform synapsin IIb may have a similar but weaker effect. Through fluorescence and staining, it has been demonstrated that synapsin IIa increases the number and density of glutamatergic synaptic vesicles in the nerve terminal of neural axons. The recovery of nervous signal transduction is attributed to the increase in density of synaptic vesicles, which carry neurotransmitters to the synaptic cleft, and the amount of synaptic vesicles in the reserve pool in the presence of synapsin IIa. In turn, this is thought to increase the number of vesicles available for mobilization from the reserve pool to the ready-release pool. The reserve pool is the pool of synaptic vesicles which reside in the nerve terminal away from the presynaptic membrane of the axon, but are not in the ready to release or ready-release pool. Those vesicles in the ready-release pool reside very close to the presynaptic membrane and are primed to release neurotransmitters for nervous signal transduction.


Interactions

The synapsin II protein has been shown to interact with
SYN1 Synapsin I, is the collective name for Synapsin Ia and Synapsin Ib, two nearly identical phosphoproteins that in humans are encoded by the ''SYN1'' gene. In its phosphorylated form, Synapsin I may also be referred to as phosphosynaspin I. Synapsi ...
.


Clinical significance

Mutation In biology, a mutation is an alteration in the nucleic acid sequence of the genome of an organism, virus, or extrachromosomal DNA. Viral genomes contain either DNA or RNA. Mutations result from errors during DNA or viral replication, m ...
s in the ''SYN2'' gene may be associated with abnormal presynaptic function and
schizophrenia Schizophrenia is a mental disorder characterized by continuous or relapsing episodes of psychosis. Major symptoms include hallucinations (typically hearing voices), delusions, and disorganized thinking. Other symptoms include social wi ...
.


References


Further reading

* * * * * * * * * * * * * * * * * {{Nerve tissue protein Molecular neuroscience Human proteins Peripheral membrane proteins