SLC25A1
   HOME

TheInfoList



OR:

Tricarboxylate transport protein, mitochondrial, also known as tricarboxylate carrier protein and citrate transport protein (CTP), is a
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
that in humans is encoded by the ''SLC25A1''
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a ba ...
. SLC25A1 belongs to the
mitochondrial carrier Mitochondrial carriers are proteins from solute carrier family 25 which transfer molecules across the membranes of the mitochondria. Mitochondrial carriers are also classified in thTransporter Classification Database The Mitochondrial Carrier (M ...
gene family SLC25. High levels of the tricarboxylate transport protein are found in the liver, pancreas and kidney. Lower or no levels are present in the brain, heart, skeletal muscle, placenta and lung. The tricarboxylate transport protein is located within the inner mitochondria membrane. It provides a link between the mitochondrial matrix and cytosol by transporting
citrate Citric acid is an organic compound with the chemical formula HOC(CO2H)(CH2CO2H)2. It is a colorless weak organic acid. It occurs naturally in citrus fruits. In biochemistry, it is an intermediate in the citric acid cycle, which occurs in t ...
through the impermeable inner mitochondrial membrane in exchange for malate from the cytosol. The citrate transported out of the mitochondrial matrix by the tricarboxylate transport protein is catalyzed by citrate lyase to
acetyl CoA Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism. Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for ...
, the starting material for
fatty acid biosynthesis Fatty is a derogatory term for someone who is obese. It may refer also to: People * Mai Fatty, Gambian politician * Roscoe Arbuckle (1887–1933), American actor and comedian * Fatty Briody (1858–1903), American Major League Baseball player * ...
, and
oxaloacetate Oxaloacetic acid (also known as oxalacetic acid or OAA) is a crystalline organic compound with the chemical formula HO2CC(O)CH2CO2H. Oxaloacetic acid, in the form of its conjugate base oxaloacetate, is a metabolic intermediate in many processes ...
. As well, cytosolic NADPH + H+ necessary for fatty acid biosynthesis is generated in the reduction of oxaloacetate to malate and pyruvate by malate dehydrogenase and the malic enzyme. For these reasons, the tricarboxylate transport protein is considered to play a key role in fatty acid synthesis.


Structure

The structure of the tricarboxylate transport protein is consistent with the structures of other mitochondrial carriers. In particular, the tricarboxylate transport protein has a tripartite structure consisting of three repeated domains that are approximately 100 amino acids in length. Each repeat forms a transmembrane domain consisting of two hydrophobic α-helices. The amino and carboxy termini are located on the cytosolic side of the inner mitochondrial membrane. Each domain is linked by two hydrophilic loops located on the cytosolic side of the membrane. The two α-helices of each repeated domain are connected by hydrophilic loops located on the matrix side of the membrane. A salt bridge network is present on both the matrix side and cytoplasmic side of the tricarboxylate transport protein.


Transport mechanism

The tricarboxylate transport protein exists in two states: a cytoplasmic state where it accepts malate from the cytoplasm and a matrix state where it accepts citrate from the mitochondrial matrix. A single binding site is present near the center of the cavity of the tricarboxylate transport protein, which can be either exposed to the cytosol or the mitochondrial matrix depending on the state. A substrate induced conformational change occurs when citrate enters from the matrix side and binds to the central cavity of the tricarboxylate transport protein. This conformational change opens a gate on the cytosolic side and closes the gate on the matrix side. Likewise, when malate enters from the cytosolic side, the matrix gate opens and the cytosolic gate closes. Each side of the transporter is open and closed by the disruption and formation of the salt bridge networks, which allows access to the single binding site.


Disease relevance

Mutations in this gene have been associated with the inborn error of metabolism combined D-2- and L-2-hydroxyglutaric aciduria, which was the first reported case of a pathogenic mutation of the SLC25A1 gene. Patients with D-2/L-2-hydroxyglutaric aciduria display neonatal onset metabolic encephalopathy, infantile epilepsy, global developmental delay, muscular hypotonia and early death. It is believed low levels of citrate in the cytosol and high levels of citrate in the mitochondria caused by the impaired citrate transport plays a role in the disease. In addition, increased expression of the tricarboxylate transport protein has been linked to cancer and the production of inflammatory mediators. Therefore, it has been suggested that inhibition of the tricarboxylate transport protein may have a therapeutic effect in chronic inflammation diseases and cancer.


See also

*


References


Further reading

* * * * * {{Membrane transport proteins Solute carrier family