HOME

TheInfoList



OR:

An S-layer (surface layer) is a part of the cell envelope found in almost all
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaeba ...
, as well as in many types of
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
. The S-layers of both archaea and bacteria consists of a monomolecular layer composed of only one (or, in a few cases, two) identical
proteins Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
or glycoproteins. This structure is built via
self-assembly Self-assembly is a process in which a disordered system of pre-existing components forms an organized structure or pattern as a consequence of specific, local interactions among the components themselves, without external direction. When the ...
and encloses the whole cell surface. Thus, the S-layer protein can represent up to 15% of the whole protein content of a cell. S-layer proteins are poorly conserved or not conserved at all, and can differ markedly even between related species. Depending on species, the S-layers have a thickness between 5 and 25 nm and possess identical pores with 2–8 nm in diameter. The terminology “S-layer” was used the first time in 1976. The general use was accepted at the "First International Workshop on Crystalline Bacterial Cell Surface Layers, Vienna (Austria)" in 1984, and in the year 1987 S-layers were defined at the
European Molecular Biology Organization The European Molecular Biology Organization (EMBO) is a professional, non-profit organization of more than 1,800 life scientists. Its goal is to promote research in life science and enable international exchange between scientists. It co-funds cour ...
Workshop on “Crystalline Bacterial Cell Surface Layers”, Vienna as “Two-dimensional arrays of proteinaceous subunits forming surface layers on prokaryotic cells” (see "Preface", page VI in Sleytr "et al. 1988"). For a brief summary on the history of S-layer research see references


Location of S-layers

* In
Gram-negative Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wa ...
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
, S-layers are associated to the lipopolysaccharides via ionic, carbohydrate–carbohydrate, protein–carbohydrate interactions and/or protein–protein interactions. * In
Gram-positive In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. Gram-positive bact ...
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
whose S-layers often contain surface layer homology (SLH) domains, the binding occurs to the
peptidoglycan Peptidoglycan or murein is a unique large macromolecule, a polysaccharide, consisting of sugars and amino acids that forms a mesh-like peptidoglycan layer outside the plasma membrane, the rigid cell wall (murein sacculus) characteristic of most ba ...
and to a secondary
cell wall A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mec ...
polymer (e.g., teichoic acids). In the absence of SLH domains, the binding occurs via electrostatic interactions between the positively charged N-terminus of the S-layer protein and a negatively charged secondary
cell wall A cell wall is a structural layer surrounding some types of cells, just outside the cell membrane. It can be tough, flexible, and sometimes rigid. It provides the cell with both structural support and protection, and also acts as a filtering mec ...
polymer. In Lactobacilli the binding domain may be located at the C-terminus. * In
Gram-negative Gram-negative bacteria are bacteria that do not retain the crystal violet stain used in the Gram staining method of bacterial differentiation. They are characterized by their cell envelopes, which are composed of a thin peptidoglycan cell wa ...
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaeba ...
, S-layer proteins possess a hydrophobic anchor that is associated with the underlying lipid membrane. * In
Gram-positive In bacteriology, gram-positive bacteria are bacteria that give a positive result in the Gram stain test, which is traditionally used to quickly classify bacteria into two broad categories according to their type of cell wall. Gram-positive bact ...
archaea Archaea ( ; singular archaeon ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaeba ...
, the S-layer proteins bind to pseudomurein or to methanochondroitin.


Biological functions of the S-layer

For many bacteria, the S-layer represents the outermost interaction zone with their respective environment. Its functions are very diverse and vary from species to species. In many archaeal species the S-layer is the only cell wall component and, therefore, is important for mechanical and osmotic stabilization. Additional functions associated with S-layers include: * protection against
bacteriophages A bacteriophage (), also known informally as a ''phage'' (), is a duplodnaviria virus that infects and replicates within bacteria and archaea. The term was derived from "bacteria" and the Greek φαγεῖν ('), meaning "to devour". Bacter ...
,
Bdellovibrio ''Bdellovibrio'' is a genus of Gram-negative, obligate aerobic bacteria. One of the more notable characteristics of this genus is that members can prey upon other Gram-negative bacteria and feed on the biopolymers, e.g. proteins and nucleic ac ...
s, and
phagocytosis Phagocytosis () is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is ...
* resistance against low pH * barrier against high-molecular-weight substances (e.g., lytic
enzymes Enzymes () are proteins that act as biological catalysts by accelerating chemical reactions. The molecules upon which enzymes may act are called substrates, and the enzyme converts the substrates into different molecules known as products. ...
) * adhesion (for
glycosylated Glycosylation is the reaction in which a carbohydrate (or ' glycan'), i.e. a glycosyl donor, is attached to a hydroxyl or other functional group of another molecule (a glycosyl acceptor) in order to form a glycoconjugate. In biology (but not ...
S-layers) * stabilisation of the membrane (e.g. the SDBC in '' Deinococcus radiodurans'') * resistance against electromagnetic stress (e.g. ionizing radiations and high temperatures) * provision of adhesion sites for exoproteins * provision of a periplasmic compartment in Gram-positive prokaryotes together with the peptidoglycan and the cytoplasmic membranes * anti-fouling properties * biomineralization * molecular sieve and barrier function


S-layer structure

While ubiquitous among Archaea, and common in bacteria, the S-layers of diverse organisms have unique structural properties, including symmetry and unit cell dimensions, due to fundamental differences in their constituent building blocks. Sequence analyses of S-layer proteins have predicted that S-layer proteins have sizes of 40-200 kDa and may be composed of multiple domains some of which may be structurally related. Since the first evidence of a macromolecular array on a bacterial cell wall fragment in the 1950s S-layer structure has been investigated extensively by electron microscopy and medium resolution images of S-layers from these analyses has provided useful information on overall S-layer morphology. High-resolution structures of an archaeal S-layer protein (MA0829 from ''
Methanosarcina acetivorans ''Methanosarcina acetivorans'' is a versatile methane producing microbe which is found in such diverse environments as oil wells, trash dumps, deep-sea hydrothermal vents, and oxygen-depleted sediments beneath kelp beds. Only ''M. acetivorans ...
'' C2A) of the
Methanosarcinales S-layer Tile Protein The Methanosarcinales S-layer Tile Protein (MSTP) is a protein family found almost exclusively in Methanomicrobia members of the order Methanosarcinales. Typically a tandem repeat of two DUF1608 domains are contained in a single MSTP protein chain ...
family and a bacterial S-layer protein (SbsB), from ''
Geobacillus stearothermophilus ''Geobacillus stearothermophilus'' (previously ''Bacillus stearothermophilus'') is a rod-shaped, Gram-positive bacterium and a member of the phylum Bacillota. The bacterium is a thermophile and is widely distributed in soil, hot springs, ocean ...
'' PV72, have recently been determined by X-ray crystallography. In contrast with existing crystal structures, which have represented individual domains of S-layer proteins or minor proteinaceous components of the S-layer, the MA0829 and SbsB structures have allowed high resolution models of the ''M''. ''acetivorans'' and ''G''. ''stearothermophilus'' S-layers to be proposed. These models exhibit hexagonal (p6) and oblique (p2) symmetry, for ''M''. ''acetivorans'' and ''G''. ''stearothermophilus'' S-layers, respectively, and their molecular features, including dimensions and porosity, are in good agreement with data from electron microscopy studies of archaeal and bacterial S-layers. In general, S-layers exhibit either an oblique (p1, p2), square (p4) or hexagonal (p3, p6) lattice symmetry. Depending on the lattice symmetry, each morphological unit of the S-layer is composed of one (p1), two (p2), three (p3), four (p4), or six (p6) identical protein subunits. The center-to-center spacing (or unit cell dimensions) between these subunits range from 4 to 35 nm.


Self-assembly


In vivo assembly

Assembly of a highly ordered coherent monomolecular S-layer array on a growing cell surface requires a continuous synthesis of a surplus of S-layer proteins and their translocation to sites of lattice growth. Moreover, information concerning this dynamic process were obtained from reconstitution experiments with isolated S-layer subunits on cell surfaces from which they had been removed (homologous reattachment) or on those of other organisms (heterologous reattachment).


In vitro assembly

S-layer proteins have the natural capability to self-assemble into regular monomolecular arrays in solution and at interfaces, such as solid supports, the air-water interface, lipid films, liposomes, emulsomes, nanocapsules, nanoparticles or micro beads. S-layer crystal growth follows a non-classical pathway in which a final refolding step of the S-layer protein is part of the lattice formation.


Application

Native S-layer proteins have already been used three decades ago in the development of biosensors and ultrafiltration membranes. Subsequently, S-layer fusion proteins with specific functional domains (e.g. enzymes, ligands, mimotopes, antibodies or antigens) allowed to investigate completely new strategies for functionalizing surfaces in the life sciences, such as in the development of novel affinity matrices, mucosal vaccines, biocompatible surfaces, micro carriers and encapsulation systems, or in the material sciences as templates for biomineralization.


References

{{DEFAULTSORT:S-Layer Cell anatomy Membrane biology