HOME

TheInfoList



OR:

Rocket propellant is the reaction mass of a
rocket A rocket (from it, rocchetto, , bobbin/spool) is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entir ...
. This reaction mass is ejected at the highest achievable velocity from a
rocket engine A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accorda ...
to produce
thrust Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that ...
. The energy required can either come from the propellants themselves, as with a
chemical rocket A rocket engine uses stored rocket propellants as the reaction mass for forming a high-speed propulsive jet of fluid, usually high-temperature gas. Rocket engines are reaction engines, producing thrust by ejecting mass rearward, in accordance ...
, or from an external source, as with ion engines.


Overview

Rockets create thrust by expelling
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
rear-ward, at high velocity. The
thrust Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction to be applied to that ...
produced can be calculated by multiplying the mass flow rate of the propellants by their exhaust velocity relative to the rocket ( specific impulse). A rocket can be thought of as being accelerated by the pressure of the combusting gases against the combustion chamber and
nozzle A nozzle is a device designed to control the direction or characteristics of a fluid flow (specially to increase velocity) as it exits (or enters) an enclosed chamber or pipe. A nozzle is often a pipe or tube of varying cross sectional area, ...
, not by "pushing" against the air behind or below it. Rocket engines perform best in
outer space Outer space, commonly shortened to space, is the expanse that exists beyond Earth and its atmosphere and between celestial bodies. Outer space is not completely empty—it is a near-perfect vacuum containing a low density of particles, pred ...
because of the lack of air pressure on the outside of the engine. In space it is also possible to fit a longer nozzle without suffering from flow separation. Most chemical propellants release energy through redox chemistry, more specifically
combustion Combustion, or burning, is a high-temperature exothermic redox chemical reaction between a fuel (the reductant) and an oxidant, usually atmospheric oxygen, that produces oxidized, often gaseous products, in a mixture termed as smoke. Combus ...
. As such, both an
oxidizing agent An oxidizing agent (also known as an oxidant, oxidizer, electron recipient, or electron acceptor) is a substance in a redox chemical reaction that gains or " accepts"/"receives" an electron from a (called the , , or ). In other words, an oxi ...
and a
reducing agent In chemistry, a reducing agent (also known as a reductant, reducer, or electron donor) is a chemical species that "donates" an electron to an (called the , , , or ). Examples of substances that are commonly reducing agents include the Earth met ...
(fuel) must be present in the mixture. Decomposition, such as that of highly unstable
peroxide In chemistry, peroxides are a group of compounds with the structure , where R = any element. The group in a peroxide is called the peroxide group or peroxo group. The nomenclature is somewhat variable. The most common peroxide is hydrogen p ...
bonds in monopropellant rockets, can also be the source of energy. In the case of bipropellant liquid rockets, a mixture of reducing fuel and oxidizing oxidizer is introduced into a
combustion chamber A combustion chamber is part of an internal combustion engine in which the fuel/air mix is burned. For steam engines, the term has also been used for an extension of the firebox which is used to allow a more complete combustion process. Intern ...
, typically using a
turbopump A turbopump is a propellant pump with two main components: a rotodynamic pump and a driving gas turbine, usually both mounted on the same shaft, or sometimes geared together. They were initially developed in Germany in the early 1940s. The purpo ...
to overcome the pressure. As combustion takes place, the liquid propellant
mass Mass is an intrinsic property of a body. It was traditionally believed to be related to the quantity of matter in a physical body, until the discovery of the atom and particle physics. It was found that different atoms and different ele ...
is converted into a huge volume of gas at high temperature and pressure. This exhaust stream is ejected from the engine nozzle at high velocity, creating an opposing force that propels the rocket forward in accordance with
Newton's laws of motion Newton's laws of motion are three basic laws of classical mechanics that describe the relationship between the motion of an object and the forces acting on it. These laws can be paraphrased as follows: # A body remains at rest, or in mo ...
. Chemical rockets can be grouped by phase. Solid rockets use propellant in the
solid phase In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetizati ...
, liquid fuel rockets use propellant in the
liquid phase A liquid is a nearly incompressible fluid that conforms to the shape of its container but retains a (nearly) constant volume independent of pressure. As such, it is one of the four fundamental states of matter (the others being solid, gas, ...
, gas fuel rockets use propellant in the
gas phase In the physical sciences, a phase is a region of space (a thermodynamic system), throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, magnetiza ...
, and
hybrid rocket A hybrid-propellant rocket is a rocket with a rocket motor that uses rocket propellants in two different phases: one solid and the other either gas or liquid. The hybrid rocket concept can be traced back to the early 1930s. Hybrid rockets avo ...
s use a combination of solid and liquid or gaseous propellants. In the case of solid rocket motors, the fuel and oxidizer are combined when the motor is cast. Propellant combustion occurs inside the motor casing, which must contain the pressures developed. Solid rockets typically have higher thrust, less specific impulse, shorter burn times, and a higher mass than liquid rockets, and additionally cannot be stopped once lit.


Rocket stages

In space, the maximum change in velocity that a rocket stage can impart on its payload is primarily a function of its
mass ratio In aerospace engineering, mass ratio is a measure of the efficiency of a rocket. It describes how much more massive the vehicle is with propellant than without; that is, the ratio of the rocket's ''wet mass'' (vehicle plus contents plus propellan ...
and its exhaust velocity. This relationship is described by the
rocket equation A rocket (from it, rocchetto, , bobbin/spool) is a vehicle that uses jet propulsion to accelerate without using the surrounding air. A rocket engine produces thrust by reaction to exhaust expelled at high speed. Rocket engines work entirely ...
. Exhaust velocity is dependent on the propellant and engine used and closely related to specific impulse, the total energy delivered to the rocket vehicle per unit of propellant mass consumed. Mass ratio can also be affected by the choice of a given propellant. Rocket stages that fly through the atmosphere usually use lower performing, high molecular mass, high-density propellants due to the smaller and lighter tankage required. Upper stages, which mostly or only operate in the vacuum of space, tend to use the high energy, high performance, low density
liquid hydrogen Liquid hydrogen (LH2 or LH2) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form. To exist as a liquid, H2 must be cooled below its critical point of 33  K. However, for it to be in a fully l ...
fuel.


Solid chemical propellants

Solid propellants come in two main types. "Composites" are composed mostly of a mixture of granules of solid oxidizer, such as
ammonium nitrate Ammonium nitrate is a chemical compound with the chemical formula . It is a white crystalline salt consisting of ions of ammonium and nitrate. It is highly soluble in water and hygroscopic as a solid, although it does not form hydrates. It is ...
,
ammonium dinitramide Ammonium dinitramide (ADN) is the ammonium salt of dinitraminic acid. ADN decomposes under heat to leave only nitrogen, oxygen, and water. The ions are the ammonium ion NH4+ and the dinitramide N(NO2)2−. It makes an excellent solid rocket oxi ...
,
ammonium perchlorate Ammonium perchlorate ("AP") is an inorganic compound with the formula Ammonium, NH4perchlorate, ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propella ...
, or
potassium nitrate Potassium nitrate is a chemical compound with the chemical formula . This alkali metal nitrate salt is also known as Indian saltpetre (large deposits of which were historically mined in India). It is an ionic salt of potassium ions K+ and ...
in a polymer binding agent, with flakes or powders of energetic fuel compounds (examples: RDX,
HMX HMX, also called octogen, is a powerful and relatively insensitive nitroamine high explosive, chemically related to RDX. Like RDX, the compound's name is the subject of much speculation, having been variously listed as High Melting Explosive, Her ...
, aluminium, beryllium). Plasticizers, stabilizers, and/or burn rate modifiers (iron oxide, copper oxide) can also be added. Single-, double-, or triple-bases (depending on the number of primary ingredients) are homogeneous mixtures of one to three primary ingredients. These primary ingredients must include fuel and oxidizer and often also include binders and plasticizers. All components are macroscopically indistinguishable and often blended as liquids and cured in a single batch. Ingredients can often have multiple roles. For example, RDX is both a fuel and oxidizer while nitrocellulose is a fuel, oxidizer, and structural polymer. Further complicating categorization, there are many propellants that contain elements of double-base and composite propellants, which often contain some amount of energetic additives homogeneously mixed into the binder. In the case of gunpowder (a pressed composite without a polymeric binder) the fuel is charcoal, the oxidizer is potassium nitrate, and sulphur serves as a reaction catalyst while also being consumed to form a variety of reaction products such as
potassium sulfide Potassium sulfide is an inorganic compound with the formula K2 S. The colourless solid is rarely encountered, because it reacts readily with water, a reaction that affords potassium hydrosulfide (KSH) and potassium hydroxide (KOH). Most commonl ...
. The newest nitramine solid propellants based on CL-20 (HNIW) can match the performance of NTO/UDMH storable liquid propellants, but cannot be throttled or restarted.


Advantages

Solid propellant rockets are much easier to store and handle than liquid propellant rockets. High propellant density makes for compact size as well. These features plus simplicity and low cost make solid propellant rockets ideal for military and space applications. Their simplicity also makes solid rockets a good choice whenever large amounts of thrust are needed and the cost is an issue. The
Space Shuttle The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program n ...
and many other orbital
launch vehicle A launch vehicle or carrier rocket is a rocket designed to carry a payload ( spacecraft or satellites) from the Earth's surface to outer space. Most launch vehicles operate from a launch pads, supported by a launch control center and sys ...
s use solid-fueled rockets in their boost stages (
solid rocket booster A solid rocket booster (SRB) is a large solid propellant motor used to provide thrust in spacecraft launches from initial launch through the first ascent. Many launch vehicles, including the Atlas V, SLS and space shuttle, have used SRBs to gi ...
s) for this reason.


Disadvantages

Solid fuel rockets have lower specific impulse, a measure of propellant efficiency, than liquid fuel rockets. As a result, the overall performance of solid upper stages is less than liquid stages even though the solid mass ratios are usually in the .91 to .93 range, as good as or better than most liquid propellant upper stages. The high mass ratios possible with these unsegmented solid upper stages is a result of high propellant density and very high strength-to-weight ratio filament-wound motor casings. A drawback to solid rockets is that they cannot be throttled in real time, although a programmed thrust schedule can be created by adjusting the interior propellant geometry. Solid rockets can be vented to extinguish combustion or reverse thrust as a means of controlling range or accommodating stage separation. Casting large amounts of propellant requires consistency and repeatability to avoid cracks and voids in the completed motor. The blending and casting take place under computer control in a vacuum, and the propellant blend is spread thin and scanned to assure no large gas bubbles are introduced into the motor. Solid fuel rockets are intolerant to cracks and voids and require post-processing such as X-ray scans to identify faults. The combustion process is dependent on the surface area of the fuel. Voids and cracks represent local increases in burning surface area, increasing the local temperature, which increases the local rate of combustion. This positive feedback loop can easily lead to catastrophic failure of the case or nozzle.


History

Solid rocket propellant was first developed during the 13th century under the Chinese
Song dynasty The Song dynasty (; ; 960–1279) was an imperial dynasty of China that began in 960 and lasted until 1279. The dynasty was founded by Emperor Taizu of Song following his usurpation of the throne of the Later Zhou. The Song conquered the res ...
. The Song Chinese first used
gunpowder Gunpowder, also commonly known as black powder to distinguish it from modern smokeless powder, is the earliest known chemical explosive. It consists of a mixture of sulfur, carbon (in the form of charcoal) and potassium nitrate (saltpeter). T ...
in 1232 during the military siege of Kaifeng. During the 1950s and 60s, researchers in the United States developed
ammonium perchlorate composite propellant Ammonium perchlorate composite propellant (APCP) is a solid-propellant rocket fuel. It differs from many traditional solid rocket propellants such as black powder or zinc-sulfur, not only in chemical composition and overall performance but als ...
(APCP). This mixture is typically 69-70% finely ground
ammonium perchlorate Ammonium perchlorate ("AP") is an inorganic compound with the formula Ammonium, NH4perchlorate, ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propella ...
(an oxidizer), combined with 16-20% fine aluminium powder (a fuel), held together in a base of 11-14% polybutadiene acrylonitrile (PBAN) or
Hydroxyl-terminated polybutadiene Hydroxyl-terminated polybutadiene (HTPB) is an oligomer of butadiene terminated at each end with a hydroxyl functional group. It reacts with isocyanates to form polyurethane polymers. HTPB is a translucent liquid with a color similar to wax paper ...
(polybutadiene rubber fuel). The mixture is formed as a thickened liquid and then cast into the correct shape and cured into a firm but flexible load-bearing solid. Historically, the tally of APCP solid propellants is relatively small. The military, however, uses a wide variety of different types of solid propellants, some of which exceed the performance of APCP. A comparison of the highest specific impulses achieved with the various solid and liquid propellant combinations used in current launch vehicles is given in the article on
solid-fuel rocket A solid-propellant rocket or solid rocket is a rocket with a rocket engine that uses solid propellants (fuel/oxidizer). The earliest rockets were solid-fuel rockets powered by gunpowder; they were used in warfare by the Arabs, Chinese, Persia ...
s. In the 1970s and 1980s, the U.S. switched entirely to solid-fueled ICBMs: the
LGM-30 Minuteman The LGM-30 Minuteman is an American land-based intercontinental ballistic missile (ICBM) in service with the Air Force Global Strike Command. , the LGM-30G Minuteman III version is the only land-based ICBM in service in the United States and ...
and
LG-118A Peacekeeper The LGM-118 Peacekeeper, originally known as the MX for "Missile, Experimental", was a MIRV-capable intercontinental ballistic missile (ICBM) produced and deployed by the United States from 1985 to 2005. The missile could carry up to twelve Mark ...
(MX). In the 1980s and 1990s, the USSR/Russia also deployed solid-fueled ICBMs (
RT-23 RT23 may refer to: *RT-23 Molodets The RT-23 Molodets (russian: РТ-23 УТТХ «Мо́лодец», lit. "brave man" or "fine fellow"; NATO reporting name: SS-24 Scalpel) was a cold-launched, three-stage, solid-fueled intercontinental ballis ...
,
RT-2PM The RT-2PM Topol (russian: РТ-2ПМ Тополь ("Poplar"); NATO reporting name SS-25 Sickle; GRAU designation: 15Ж58 ("15Zh58"); START I designation: RS-12M Topol) is a mobile intercontinental ballistic missile designed in the Soviet Union a ...
, and RT-2UTTH), but retains two liquid-fueled ICBMs ( R-36 and
UR-100N The UR-100N, also known as RS-18A is an intercontinental ballistic missile in service with Soviet and Russian Strategic Missile Troops. The missile was given the NATO reporting name SS-19 Stiletto and carries the industry designation 15A30. Deve ...
). All solid-fueled ICBMs on both sides had three initial solid stages, and those with multiple independently targeted warheads had a precision maneuverable bus used to fine tune the trajectory of the re-entry vehicles.


Liquid chemical propellants

The main types of liquid propellants are storable propellants, which tend to be
cryogenic In physics, cryogenics is the production and behaviour of materials at very low temperatures. The 13th IIR International Congress of Refrigeration (held in Washington DC in 1971) endorsed a universal definition of “cryogenics” and “cr ...
and
hypergolic propellant A hypergolic propellant is a rocket propellant combination used in a rocket engine, whose components spontaneously ignite when they come into contact with each other. The two propellant components usually consist of a fuel and an oxidizer. The ...
s.


Advantages

Liquid-fueled rockets have higher specific impulse than solid rockets and are capable of being throttled, shut down, and restarted. Only the combustion chamber of a liquid-fueled rocket needs to withstand high combustion pressures and temperatures. Cooling can be done regeneratively with the liquid propellant. On vehicles employing
turbopump A turbopump is a propellant pump with two main components: a rotodynamic pump and a driving gas turbine, usually both mounted on the same shaft, or sometimes geared together. They were initially developed in Germany in the early 1940s. The purpo ...
s, the propellant tanks are at a lower pressure than the combustion chamber, decreasing tank mass. For these reasons, most orbital launch vehicles use liquid propellants. The primary specific impulse advantage of liquid propellants is due to the availability of high-performance oxidizers. Several practical liquid oxidizers (
liquid oxygen Liquid oxygen—abbreviated LOx, LOX or Lox in the aerospace, submarine and gas industries—is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an app ...
,
dinitrogen tetroxide Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russia rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium ...
, and
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3 ...
) are available which have better specific impulse than the
ammonium perchlorate Ammonium perchlorate ("AP") is an inorganic compound with the formula Ammonium, NH4perchlorate, ClO4. It is a colorless or white solid that is soluble in water. It is a powerful oxidizer. Combined with a fuel, it can be used as a rocket propella ...
used in most solid rockets when paired with suitable fuels. Some gases, notably oxygen and nitrogen, may be able to be collected from the
upper atmosphere Upper atmosphere is a collective term that refers to various layers of the atmosphere of the Earth above the troposphere and corresponding regions of the atmospheres of other planets, and includes: * The mesosphere, which on Earth lies between th ...
, and transferred up to
low Earth orbit A low Earth orbit (LEO) is an orbit around Earth with a period of 128 minutes or less (making at least 11.25 orbits per day) and an eccentricity less than 0.25. Most of the artificial objects in outer space are in LEO, with an altitude never m ...
for use in propellant depots at substantially reduced cost. Jones, C., Masse, D., Glass, C., Wilhite, A., and Walker, M. (2010), "PHARO: Propellant harvesting of atmospheric resources in orbit," IEEE Aerospace Conference.


Disadvantages

The main difficulties with liquid propellants are also with the oxidizers. Storable oxidizers, such as
nitric acid Nitric acid is the inorganic compound with the formula . It is a highly corrosive mineral acid. The compound is colorless, but older samples tend to be yellow cast due to decomposition into oxides of nitrogen. Most commercially available ni ...
and nitrogen tetroxide, tend to be extremely toxic and highly reactive, while cryogenic propellants by definition must be stored at low temperature and can also have reactivity/toxicity issues.
Liquid oxygen Liquid oxygen—abbreviated LOx, LOX or Lox in the aerospace, submarine and gas industries—is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an app ...
(LOX) is the only flown cryogenic oxidizer. Others such as FLOX, a
fluorine Fluorine is a chemical element with the symbol F and atomic number 9. It is the lightest halogen and exists at standard conditions as a highly toxic, pale yellow diatomic gas. As the most electronegative reactive element, it is extremely reactiv ...
/LOX mix, have never been flown due to instability, toxicity, and explosivity. Several other unstable, energetic, and toxic oxidizers have been proposed: liquid
ozone Ozone (), or trioxygen, is an inorganic molecule with the chemical formula . It is a pale blue gas with a distinctively pungent smell. It is an allotrope of oxygen that is much less stable than the diatomic allotrope , breaking down in the l ...
(O3), ClF3, and ClF5. Liquid-fueled rockets require potentially troublesome valves, seals, and turbopumps, which increase the cost of the launch vehicle. Turbopumps are particularly troublesome due to high performance requirements.


Current cryogenic types

*
Liquid oxygen Liquid oxygen—abbreviated LOx, LOX or Lox in the aerospace, submarine and gas industries—is the liquid form of molecular oxygen. It was used as the oxidizer in the first liquid-fueled rocket invented in 1926 by Robert H. Goddard, an app ...
(LOX) and highly refined
kerosene Kerosene, paraffin, or lamp oil is a combustible hydrocarbon liquid which is derived from petroleum. It is widely used as a fuel in aviation as well as households. Its name derives from el, κηρός (''keros'') meaning " wax", and was re ...
( RP-1). Used for the first stages of the
Atlas V Atlas V is an expendable launch system and the fifth major version in the Atlas launch vehicle family. It was originally designed by Lockheed Martin, now being operated by United Launch Alliance (ULA), a joint venture between Lockheed Mart ...
,
Falcon 9 Falcon 9 is a partially reusable medium lift launch vehicle that can carry cargo and crew into Earth orbit, produced by American aerospace company SpaceX. The rocket has two stages. The first (booster) stage carries the second stage and pay ...
,
Falcon Heavy Falcon Heavy is a partially reusable heavy-lift launch vehicle that is produced by SpaceX, an American aerospace manufacturer. The rocket consists of two strap-on boosters made from Falcon 9 first stages, a center core also made from a Falc ...
, Soyuz, Zenit,
Angara The Angara ( Buryat and mn, Ангар, ''Angar'',  "Cleft"; russian: Ангара́, ''Angará'') is a major river in Siberia, which traces a course through Russia's Irkutsk Oblast and Krasnoyarsk Krai. It drains out of Lake Baikal and is ...
and Long March 6, among others. This combination is widely regarded as the most practical for boosters that lift off at ground level and therefore must operate at full atmospheric pressure. * LOX and
liquid hydrogen Liquid hydrogen (LH2 or LH2) is the liquid state of the element hydrogen. Hydrogen is found naturally in the molecular H2 form. To exist as a liquid, H2 must be cooled below its critical point of 33  K. However, for it to be in a fully l ...
. Used on the Centaur upper stage, the Delta IV rocket, the H-IIA rocket, most stages of the European
Ariane 5 Ariane 5 is a European heavy-lift space launch vehicle developed and operated by Arianespace for the European Space Agency (ESA). It is launched from the Centre Spatial Guyanais (CSG) in French Guiana. It has been used to deliver payloads in ...
, and the
Space Launch System The Space Launch System (SLS) is an American super heavy-lift expendable launch vehicle developed by NASA. As of 2022, SLS has the highest payload capacity of any rocket in operational service, as well as the greatest liftoff thrust of any ...
core and upper stages. * LOX and liquid methane (from
Liquefied natural gas Liquefied natural gas (LNG) is natural gas (predominantly methane, CH4, with some mixture of ethane, C2H6) that has been cooled down to liquid form for ease and safety of non-pressurized storage or transport. It takes up about 1/600th the vol ...
) are planned for use on several rockets in development, including Vulcan,
New Glenn New Glenn is a heavy-lift orbital launch vehicle in development by Blue Origin. Named after NASA astronaut John Glenn, design work on the vehicle began in 2012. Illustrations of the vehicle, and the high-level specifications, were initial ...
, SpaceX Starship, and Rocket Lab Neutron.


Current storable types

*
Dinitrogen tetroxide Dinitrogen tetroxide, commonly referred to as nitrogen tetroxide (NTO), and occasionally (usually among ex-USSR/Russia rocket engineers) as amyl, is the chemical compound N2O4. It is a useful reagent in chemical synthesis. It forms an equilibrium ...
(N2O4) and
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
(N2H4), MMH, or UDMH. Used in military, orbital, and deep space rockets because both liquids are storable for long periods at reasonable temperatures and pressures. N2O4/UDMH is the main fuel for the Proton rocket, older Long March rockets (LM 1-4),
PSLV The Polar Satellite Launch Vehicle (PSLV) is an expendable medium-lift launch vehicle designed and operated by the Indian Space Research Organisation (ISRO). It was developed to allow India to launch its Indian Remote Sensing (IRS) satellites ...
, Fregat, and Briz-M upper stages. This combination is
hypergolic A hypergolic propellant is a rocket propellant combination used in a rocket engine, whose components spontaneously ignite when they come into contact with each other. The two propellant components usually consist of a fuel and an oxidizer. T ...
, making for attractively simple ignition sequences. The major inconvenience is that these propellants are highly toxic and require careful handling. * Monopropellants such as
hydrogen peroxide Hydrogen peroxide is a chemical compound with the formula . In its pure form, it is a very pale blue liquid that is slightly more viscous than water. It is used as an oxidizer, bleaching agent, and antiseptic, usually as a dilute solution (3 ...
,
hydrazine Hydrazine is an inorganic compound with the chemical formula . It is a simple pnictogen hydride, and is a colourless flammable liquid with an ammonia-like odour. Hydrazine is highly toxic unless handled in solution as, for example, hydrazine ...
, and
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and ha ...
are primarily used for attitude control and spacecraft station-keeping where their long-term storability, simplicity of use, and ability to provide the tiny impulses needed outweighs their lower specific impulse as compared to bipropellants. Hydrogen peroxide is also used to drive the turbopumps on the first stage of the Soyuz launch vehicle.


Mixture ratio

The theoretical exhaust velocity of a given propellant chemistry is proportional to the energy released per unit of propellant mass (specific energy). In chemical rockets, unburned fuel or oxidizer represents the loss of chemical potential energy, which reduces the specific energy. However, most rockets run fuel-rich mixtures, which result in lower theoretical exhaust velocities.Rocket Propulsion
Robert A. Braeunig, ''Rocket and Space Technology'', 2012.
However, fuel-rich mixtures also have lower
molecular weight A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
exhaust species. The nozzle of the rocket converts the thermal energy of the propellants into directed
kinetic energy In physics, the kinetic energy of an object is the energy that it possesses due to its motion. It is defined as the work needed to accelerate a body of a given mass from rest to its stated velocity. Having gained this energy during its acce ...
. This conversion happens in the time it takes for the propellants to flow from the combustion chamber through the engine throat and out the nozzle, usually on the order of one millisecond. Molecules store thermal energy in rotation, vibration, and translation, of which only the latter can easily be used to add energy to the rocket stage. Molecules with fewer atoms (like CO and H2) have fewer available vibrational and rotational modes than molecules with more atoms (like CO2 and H2O). Consequently, smaller molecules store less vibrational and
rotational energy Rotational energy or angular kinetic energy is kinetic energy due to the rotation of an object and is part of its total kinetic energy. Looking at rotational energy separately around an object's axis of rotation, the following dependence on the ob ...
for a given amount of heat input, resulting in more translation energy being available to be converted to kinetic energy. The resulting improvement in nozzle efficiency is large enough that real rocket engines improve their actual exhaust velocity by running rich mixtures with somewhat lower theoretical exhaust velocities. The effect of exhaust molecular weight on nozzle efficiency is most important for nozzles operating near sea level. High expansion rockets operating in a vacuum see a much smaller effect, and so are run less rich. LOX/hydrocarbon rockets are run slightly rich (O/F mass ratio of 3 rather than stoichiometric of 3.4 to 4) because the energy release per unit mass drops off quickly as the mixture ratio deviates from stoichiometric. LOX/LH2 rockets are run very rich (O/F mass ratio of 4 rather than stoichiometric 8) because hydrogen is so light that the energy release per unit mass of propellant drops very slowly with extra hydrogen. In fact, LOX/LH2 rockets are generally limited in how rich they run by the performance penalty of the mass of the extra hydrogen tankage instead of the underlying chemistry. Another reason for running rich is that off-stoichiometric mixtures burn cooler than stoichiometric mixtures, which makes engine cooling easier. Because fuel-rich combustion products are less chemically reactive ( corrosive) than oxidizer-rich combustion products, a vast majority of rocket engines are designed to run fuel-rich. At least one exception exists: the Russian
RD-180 The RD-180 ( rus, РД-180, Ракетный Двигатель-180, Raketnyy Dvigatel-180) is a rocket engine designed and built in Russia. It features a dual combustion chamber, dual- nozzle design and is fueled by a RP-1/ LOX mixture. The RD ...
preburner, which burns LOX and RP-1 at a ratio of 2.72. Additionally, mixture ratios can be dynamic during launch. This can be exploited with designs that adjust the oxidizer to fuel ratio (along with overall thrust) throughout a flight to maximize overall system performance. For instance, during lift-off thrust is more valuable than specific impulse, and careful adjustment of the O/F ratio may allow higher thrust levels. Once the rocket is away from the launchpad, the engine O/F ratio can be tuned for higher efficiency.


Propellant density

Although liquid hydrogen gives a high Isp, its low density is a disadvantage: hydrogen occupies about 7 times more volume per kilogram than dense fuels such as kerosene. The fuel tankage, plumbing, and pump must be correspondingly larger. This increases the vehicle's dry mass, reducing performance. Liquid hydrogen is also relatively expensive to produce and store, and causes difficulties with design, manufacture, and operation of the vehicle. However, liquid hydrogen is extremely well suited to upper stage use where Isp is at a premium and thrust to weight ratios are less relevant. Dense propellant launch vehicles have a higher takeoff mass due to lower Isp, but can more easily develop high takeoff thrusts due to the reduced volume of engine components. This means that vehicles with dense-fueled booster stages reach orbit earlier, minimizing losses due to gravity drag and reducing the effective
delta-v Delta-''v'' (more known as " change in velocity"), symbolized as ∆''v'' and pronounced ''delta-vee'', as used in spacecraft flight dynamics, is a measure of the impulse per unit of spacecraft mass that is needed to perform a maneuver such a ...
requirement. The proposed
tripropellant rocket A tripropellant rocket is a rocket that uses three propellants, as opposed to the more common bipropellant rocket or monopropellant rocket designs, which use two or one propellants, respectively. Tripropellant systems can be designed to have high ...
uses mainly dense fuel while at low altitude and switches across to hydrogen at higher altitude. Studies in the 1960s proposed
single-stage-to-orbit A single-stage-to-orbit (SSTO) vehicle reaches orbit from the surface of a body using only propellants and fluids and without expending tanks, engines, or other major hardware. The term usually, but not exclusively, refers to reusable vehicles ...
vehicles using this technique. The
Space Shuttle The Space Shuttle is a retired, partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program n ...
approximated this by using dense solid rocket boosters for the majority of the thrust during the first 120 seconds. The main engines burned a fuel-rich hydrogen and oxygen mixture, operating continuously throughout the launch but providing the majority of thrust at higher altitudes after SRB burnout.


Other chemical propellants


Hybrid propellants

Hybrid propellants: a storable oxidizer used with a solid fuel, which retains most virtues of both liquids (high ISP) and solids (simplicity). A hybrid-propellant rocket usually has a solid fuel and a liquid or NEMA oxidizer. The fluid oxidizer can make it possible to throttle and restart the motor just like a liquid-fueled rocket. Hybrid rockets can also be environmentally safer than solid rockets since some high-performance solid-phase oxidizers contain chlorine (specifically composites with ammonium perchlorate), versus the more benign liquid oxygen or nitrous oxide often used in hybrids. This is only true for specific hybrid systems. There have been hybrids which have used chlorine or fluorine compounds as oxidizers and hazardous materials such as beryllium compounds mixed into the solid fuel grain. Because just one constituent is a fluid, hybrids can be simpler than liquid rockets depending motive force used to transport the fluid into the combustion chamber. Fewer fluids typically mean fewer and smaller piping systems, valves and pumps (if utilized). Hybrid motors suffer two major drawbacks. The first, shared with solid rocket motors, is that the casing around the fuel grain must be built to withstand full combustion pressure and often extreme temperatures as well. However, modern composite structures handle this problem well, and when used with
nitrous oxide Nitrous oxide (dinitrogen oxide or dinitrogen monoxide), commonly known as laughing gas, nitrous, or nos, is a chemical compound, an oxide of nitrogen with the formula . At room temperature, it is a colourless non-flammable gas, and ha ...
and a solid rubber propellant (HTPB), relatively small percentage of fuel is needed anyway, so the combustion chamber is not especially large. The primary remaining difficulty with hybrids is with mixing the propellants during the combustion process. In solid propellants, the oxidizer and fuel are mixed in a factory in carefully controlled conditions. Liquid propellants are generally mixed by the injector at the top of the combustion chamber, which directs many small swift-moving streams of fuel and oxidizer into one another. Liquid-fueled rocket injector design has been studied at great length and still resists reliable performance prediction. In a hybrid motor, the mixing happens at the melting or evaporating surface of the fuel. The mixing is not a well-controlled process and generally, quite a lot of propellant is left unburned, which limits the efficiency of the motor. The combustion rate of the fuel is largely determined by the oxidizer flux and exposed fuel surface area. This combustion rate is not usually sufficient for high power operations such as boost stages unless the surface area or oxidizer flux is high. Too high of oxidizer flux can lead to flooding and loss of flame holding that locally extinguishes the combustion. Surface area can be increased, typically by longer grains or multiple ports, but this can increase combustion chamber size, reduce grain strength and/or reduce volumetric loading. Additionally, as the burn continues, the hole down the center of the grain (the 'port') widens and the mixture ratio tends to become more oxidizer rich. There has been much less development of hybrid motors than solid and liquid motors. For military use, ease of handling and maintenance have driven the use of solid rockets. For orbital work, liquid fuels are more efficient than hybrids and most development has concentrated there. There has recently been an increase in hybrid motor development for nonmilitary suborbital work: *Several universities have recently experimented with hybrid rockets.
Brigham Young University Brigham Young University (BYU, sometimes referred to colloquially as The Y) is a private research university in Provo, Utah. It was founded in 1875 by religious leader Brigham Young and is sponsored by the Church of Jesus Christ of Latter-d ...
, the
University of Utah The University of Utah (U of U, UofU, or simply The U) is a public research university in Salt Lake City, Utah. It is the flagship institution of the Utah System of Higher Education. The university was established in 1850 as the University of De ...
and
Utah State University Utah State University (USU or Utah State) is a public land-grant research university in Logan, Utah. It is accredited by the Northwest Commission on Colleges and Universities. With nearly 20,000 students living on or near campus, USU is Utah ...
launched a student-designed rocket called Unity IV in 1995 which burned the solid fuel hydroxy-terminated polybutadiene (HTPB) with an oxidizer of gaseous oxygen, and in 2003 launched a larger version which burned HTPB with nitrous oxide.
Stanford University Stanford University, officially Leland Stanford Junior University, is a private research university in Stanford, California. The campus occupies , among the largest in the United States, and enrolls over 17,000 students. Stanford is conside ...
researches nitrous-oxide/
paraffin wax Paraffin wax (or petroleum wax) is a soft colorless solid derived from petroleum, coal, or oil shale that consists of a mixture of hydrocarbon molecules containing between 20 and 40 carbon atoms. It is solid at room temperature and begins t ...
hybrid motors.
UCLA The University of California, Los Angeles (UCLA) is a public land-grant research university in Los Angeles, California. UCLA's academic roots were established in 1881 as a teachers college then known as the southern branch of the California ...
has launched hybrid rockets through an undergraduate student group since 2009 using HTPB. *The Rochester Institute of Technology was building an HTPB hybrid rocket to launch small payloads into space and to several near-Earth objects. Its first launch was in the Summer of 2007. * Scaled Composites SpaceShipOne, the first private crewed spacecraft, was powered by a hybrid rocket burning HTPB with nitrous oxide:
RocketMotorOne SpaceShipOne is an experimental air-launched rocket-powered aircraft with sub-orbital spaceflight capability at speeds of up to 3,000 ft/s (900 m/s, 3240 km/h), using a hybrid rocket motor. The design features a unique "feathering" a ...
. The hybrid rocket engine was manufactured by SpaceDev. SpaceDev partially based its motors on experimental data collected from the testing of AMROC's (American Rocket Company) motors at NASA's Stennis Space Center's E1 test stand.


Gaseous propellants

GOX (gaseous oxygen) was used as the oxidizer for the
Buran program The ''Buran'' program (russian: Буран, , "Snowstorm", "Blizzard"), also known as the "VKK Space Orbiter program" (russian: ВКК «Воздушно-Космический Корабль», lit=Air and Space Ship), was a Soviet and later R ...
's orbital maneuvering system.


Inert propellants

Some rocket designs impart energy to their propellants with external energy sources. For example,
water rocket A water rocket is a type of model rocket using water as its reaction mass. The water is forced out by a pressurized gas, typically compressed air. Like all rocket engines, it operates on the principle of Newton's third law of motion. Water rock ...
s use a compressed gas, typically air, to force the water reaction mass out of the rocket.


Ion thruster

Ion thruster An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity. An ion thruster ionizes a neutral gas by extracting some electrons out of ...
s ionize a neutral gas and create thrust by accelerating the ions (or the plasma) by electric and/or magnetic fields.


Thermal rockets

Thermal rocket A thermal rocket is a rocket engine that uses a propellant that is externally heated before being passed through a nozzle to produce thrust, as opposed to being internally heated by a redox (combustion) reaction as in a chemical rocket. Thermal ...
s use inert propellants of low molecular weight that are chemically compatible with the heating mechanism at high temperatures. Solar thermal rockets and nuclear thermal rockets typically propose to use liquid hydrogen for a specific impulse of around 600–900 seconds, or in some cases water that is exhausted as steam for a specific impulse of about 190 seconds. Nuclear thermal rockets use the heat of
nuclear fission Nuclear fission is a reaction in which the nucleus of an atom splits into two or more smaller nuclei. The fission process often produces gamma photons, and releases a very large amount of energy even by the energetic standards of radio ...
to add energy to the propellant. Some designs separate the nuclear fuel and working fluid, minimizing the potential for radioactive contamination, but nuclear fuel loss was a persistent problem during real-world testing programs. Solar thermal rockets use concentrated sunlight to heat a propellant, rather than using a nuclear reactor.


Compressed gas

For low performance applications, such as attitude control jets, compressed gases such as nitrogen have been employed. Energy is stored in the pressure of the inert gas. However, due to the low density of all practical gases and high mass of the pressure vessel required to contain it, compressed gases see little current use.


Nuclear plasma

In Project Orion and other nuclear pulse propulsion proposals, the propellant would be plasma debris from a series of nuclear explosions.


See also

* ALICE (propellant) * Trinitramide * Timeline of hydrogen technologies * :Rocket fuels * Comparison:
Aviation fuel Aviation fuels are petroleum-based fuels, or petroleum and synthetic fuel blends, used to power aircraft. They have more stringent requirements than fuels used for ground use, such as heating and road transport, and contain additives to enhan ...
* Nuclear propulsion *
Ion thruster An ion thruster, ion drive, or ion engine is a form of electric propulsion used for spacecraft propulsion. It creates thrust by accelerating ions using electricity. An ion thruster ionizes a neutral gas by extracting some electrons out of ...
* Crawford burner


References


External links

{{Commonscat, Aircraft fuels
Rocket Propellants
(from ''Rocket & Space Technology'') Chinese inventions Pyrotechnics Rocket propulsion