HOME

TheInfoList



OR:

In
biology Biology is the scientific study of life. It is a natural science with a broad scope but has several unifying themes that tie it together as a single, coherent field. For instance, all organisms are made up of cells that process hereditary ...
, regeneration is the process of renewal, restoration, and tissue growth that makes
genome In the fields of molecular biology and genetics, a genome is all the genetic information of an organism. It consists of nucleotide sequences of DNA (or RNA in RNA viruses). The nuclear genome includes protein-coding genes and non-coding ...
s, cells,
organisms In biology, an organism () is any living system that functions as an individual entity. All organisms are composed of cells ( cell theory). Organisms are classified by taxonomy into groups such as multicellular animals, plants, and fu ...
, and ecosystems resilient to natural fluctuations or events that cause disturbance or damage. Every
species In biology, a species is the basic unit of classification and a taxonomic rank of an organism, as well as a unit of biodiversity. A species is often defined as the largest group of organisms in which any two individuals of the appropriat ...
is capable of regeneration, from
bacteria Bacteria (; singular: bacterium) are ubiquitous, mostly free-living organisms often consisting of one biological cell. They constitute a large domain of prokaryotic microorganisms. Typically a few micrometres in length, bacteria were am ...
to humans. Regeneration can either be complete where the new tissue is the same as the lost tissue, or incomplete where after the necrotic tissue comes fibrosis. At its most elementary level, regeneration is mediated by the molecular processes of
gene regulation Regulation of gene expression, or gene regulation, includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products ( protein or RNA). Sophisticated programs of gene expression are w ...
and involves the cellular processes of
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation r ...
, morphogenesis and
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
. Regeneration in biology, however, mainly refers to the morphogenic processes that characterize the phenotypic plasticity of traits allowing multi-cellular organisms to repair and maintain the integrity of their physiological and morphological states. Above the genetic level, regeneration is fundamentally regulated by asexual cellular processes. Regeneration is different from reproduction. For example, hydra perform regeneration but reproduce by the method of
budding Budding or blastogenesis is a type of asexual reproduction in which a new organism develops from an outgrowth or bud due to cell division at one particular site. For example, the small bulb-like projection coming out from the yeast cell is kno ...
. The hydra and the planarian flatworm have long served as model organisms for their highly adaptive regenerative capabilities. Once wounded, their cells become activated and restore the organs back to their pre-existing state. The Caudata ("urodeles";
salamander Salamanders are a group of amphibians typically characterized by their lizard-like appearance, with slender bodies, blunt snouts, short limbs projecting at right angles to the body, and the presence of a tail in both larvae and adults. All t ...
s and newts), an
order Order, ORDER or Orders may refer to: * Categorization, the process in which ideas and objects are recognized, differentiated, and understood * Heterarchy, a system of organization wherein the elements have the potential to be ranked a number of ...
of tailed
amphibia Amphibians are four-limbed and ectothermic vertebrates of the class Amphibia. All living amphibians belong to the group Lissamphibia. They inhabit a wide variety of habitats, with most species living within terrestrial, fossorial, arbo ...
ns, is possibly the most adept
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, with ...
group at regeneration, given their capability of regenerating limbs, tails, jaws, eyes and a variety of internal structures. The regeneration of organs is a common and widespread adaptive capability among
metazoa Animals are multicellular, eukaryotic organisms in the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and go through an ontogenetic stage in ...
n creatures. In a related context, some animals are able to reproduce asexually through fragmentation, budding, or fission. A planarian parent, for example, will constrict, split in the middle, and each half generates a new end to form two clones of the original.
Echinoderms An echinoderm () is any member of the phylum Echinodermata (). The adults are recognisable by their (usually five-point) radial symmetry, and include starfish, brittle stars, sea urchins, sand dollars, and sea cucumbers, as well as the ...
(such as the sea star), crayfish, many reptiles, and amphibians exhibit remarkable examples of tissue regeneration. The case of
autotomy Autotomy (from the Greek ''auto-'', "self-" and ''tome'', "severing", αὐτοτομία) or self-amputation, is the behaviour whereby an animal sheds or discards one or more of its own appendages, usually as a self-defense mechanism to elude ...
, for example, serves as a defensive function as the animal detaches a limb or tail to avoid capture. After the limb or tail has been autotomized, cells move into action and the tissues will regenerate. In some cases a shed limb can itself regenerate a new individual. Limited regeneration of limbs occurs in most fishes and salamanders, and tail regeneration takes place in larval frogs and toads (but not adults). The whole limb of a salamander or a triton will grow again and again after amputation. In reptiles, chelonians, crocodilians and snakes are unable to regenerate lost parts, but many (not all) kinds of lizards, geckos and iguanas possess regeneration capacity in a high degree. Usually, it involves dropping a section of their tail and regenerating it as part of a defense mechanism. While escaping a predator, if the predator catches the tail, it will disconnect.


Ecosystems

Ecosystems can be regenerative. Following a disturbance, such as a fire or pest outbreak in a forest, pioneering species will occupy, compete for space, and establish themselves in the newly opened habitat. The new growth of seedlings and community assembly process is known as regeneration in
ecology Ecology () is the study of the relationships between living organisms, including humans, and their physical environment. Ecology considers organisms at the individual, population, community, ecosystem, and biosphere level. Ecology overl ...
.


Cellular molecular fundamentals

Pattern formation in the morphogenesis of an animal is regulated by genetic induction factors that put cells to work after damage has occurred. Neural cells, for example, express growth-associated proteins, such as
GAP-43 Growth Associated Protein 43 (GAP43) is a protein encoded by the ''GAP43'' gene in humans. GAP43 is called a "growth" or "plasticity" protein because it is expressed at high levels in neuronal growth cones during developmentReferenced within : ...
, tubulin,
actin Actin is a family of globular multi-functional proteins that form microfilaments in the cytoskeleton, and the thin filaments in muscle fibrils. It is found in essentially all eukaryotic cells, where it may be present at a concentration of ov ...
, an array of novel
neuropeptide Neuropeptides are chemical messengers made up of small chains of amino acids that are synthesized and released by neurons. Neuropeptides typically bind to G protein-coupled receptors (GPCRs) to modulate neural activity and other tissues like t ...
s, and cytokines that induce a cellular physiological response to regenerate from the damage. Many of the genes that are involved in the original development of tissues are reinitialized during the regenerative process. Cells in the
primordia A primordium (; plural: primordia; synonym: anlage) in embryology, is an organ or tissue in its earliest recognizable stage of development. Cells of the primordium are called primordial cells. A primordium is the simplest set of cells capable o ...
of zebrafish fins, for example, express four genes from the
homeobox A homeobox is a DNA sequence, around 180 base pairs long, that regulates large-scale anatomical features in the early stages of embryonic development. For instance, mutations in a homeobox may change large-scale anatomical features of the full-g ...
''msx'' family during development and regeneration.


Tissues

"Strategies include the rearrangement of pre-existing tissue, the use of adult somatic stem cells and the dedifferentiation and/or transdifferentiation of cells, and more than one mode can operate in different tissues of the same animal. All these strategies result in the re-establishment of appropriate tissue polarity, structure and form." During the developmental process, genes are activated that serve to modify the properties of cell as they differentiate into different tissues. Development and regeneration involves the coordination and organization of populations cells into a
blastema A blastema ( Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how bla ...
, which is "a mound of stem cells from which regeneration begins". Dedifferentiation of cells means that they lose their tissue-specific characteristics as tissues remodel during the regeneration process. This should not be confused with the transdifferentiation of cells which is when they lose their tissue-specific characteristics during the regeneration process, and then re-differentiate to a different kind of cell.


In animals


Arthropods


Limb regeneration

Many
arthropods Arthropods (, (gen. ποδός)) are invertebrate animals with an exoskeleton, a segmented body, and paired jointed appendages. Arthropods form the phylum Arthropoda. They are distinguished by their jointed limbs and cuticle made of chitin, ...
can regenerate limbs and other appendages following either injury or
autotomy Autotomy (from the Greek ''auto-'', "self-" and ''tome'', "severing", αὐτοτομία) or self-amputation, is the behaviour whereby an animal sheds or discards one or more of its own appendages, usually as a self-defense mechanism to elude ...
. Regeneration capacity is constrained by the developmental stage and ability to molt.
Crustacean Crustaceans (Crustacea, ) form a large, diverse arthropod taxon which includes such animals as decapoda, decapods, ostracoda, seed shrimp, branchiopoda, branchiopods, argulidae, fish lice, krill, remipedes, isopoda, isopods, barnacles, copepods, ...
s, which continually molt, can regenerate throughout their lifetimes. While molting cycles are generally hormonally regulated, limb amputation induces premature molting. Hemimetabolous
insect Insects (from Latin ') are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body ( head, thorax and abdomen), three pa ...
s such as crickets can regenerate limbs as nymphs, before their final molt. Holometabolous insects can regenerate appendages as larvae prior to the final molt and
metamorphosis Metamorphosis is a biological process by which an animal physically develops including birth or hatching, involving a conspicuous and relatively abrupt change in the animal's body structure through cell growth and differentiation. Some inse ...
. Beetle larvae, for example, can regenerate amputated limbs. Fruit fly larvae do not have limbs but can regenerate their appendage primordia, imaginal discs. In both systems, the regrowth of the new tissue delays pupation. Mechanisms underlying appendage limb regeneration in insects and crustaceans are highly conserved. During limb regeneration species in both taxa form a
blastema A blastema ( Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how bla ...
that proliferates and grows to repattern the missing tissue.


Venom regeneration

Arachnids, including scorpions, are known to regenerate their venom, although the content of the regenerated venom is different from the original venom during its regeneration, as the venom volume is replaced before the active proteins are all replenished.


Fruit fly model

The fruit fly
Drosophila melanogaster ''Drosophila melanogaster'' is a species of fly (the taxonomic order Diptera) in the family Drosophilidae. The species is often referred to as the fruit fly or lesser fruit fly, or less commonly the " vinegar fly" or "pomace fly". Starting with ...
is a useful model organism to understand the molecular mechanisms that control regeneration, especially gut and germline regeneration. In these tissues, resident stem cells continually renew lost cells. The Hippo signaling pathway was discovered in flies and was found to be required for midgut regeneration. Later, this conserved signaling pathway was also found to be essential for regeneration of many mammalian tissues, including heart, liver, skin, and lung, and intestine.


Annelids

Many
annelid The annelids (Annelida , from Latin ', "little ring"), also known as the segmented worms, are a large phylum, with over 22,000 extant species including ragworms, earthworms, and leeches. The species exist in and have adapted to various ecol ...
s (segmented worms) are capable of regeneration. For example, '' Chaetopterus variopedatus'' and '' Branchiomma nigromaculata'' can regenerate both anterior and posterior body parts after latitudinal bisection. The relationship between somatic and germline stem cell regeneration has been studied at the molecular level in the annelid ''
Capitella teleta ''Capitella teleta'' is a small, cosmopolitan, segmented annelid worm. It is a well-studied invertebrate, which has been cultured for use in laboratories for over 30 years. ''C. teleta'' is the first marine polychaete to have its genome sequence ...
''.
Leeches Leeches are segmented parasitic or predatory worms that comprise the subclass Hirudinea within the phylum Annelida. They are closely related to the oligochaetes, which include the earthworm, and like them have soft, muscular segmented b ...
, however, appear incapable of segmental regeneration. Furthermore, their close relatives, the branchiobdellids, are also incapable of segmental regeneration. However, certain individuals, like the lumbriculids, can regenerate from only a few segments. Segmental regeneration in these animals is epimorphic and occurs through
blastema A blastema ( Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how bla ...
formation. Segmental regeneration has been gained and lost during annelid evolution, as seen in oligochaetes, where head regeneration has been lost three separate times. Along with epimorphosis, some polychaetes like '' Sabella pavonina'' experience morphallactic regeneration. Morphallaxis involves the de-differentiation, transformation, and re-differentation of cells to regenerate tissues. How prominent morphallactic regeneration is in oligochaetes is currently not well understood. Although relatively under-reported, it is possible that morphallaxis is a common mode of inter-segment regeneration in annelids. Following regeneration in ''L. variegatus'', past posterior segments sometimes become anterior in the new body orientation, consistent with morphallaxis. Following amputation, most annelids are capable of sealing their body via rapid muscular contraction. Constriction of body muscle can lead to infection prevention. In certain species, such as ''
Limnodrilus ''Limnodrilus'' is a genus of Naididae. The genus was described in 1862 by René-Édouard Claparède. It has cosmopolitan distribution In biogeography, cosmopolitan distribution is the term for the range of a taxon that extends across all or ...
'', autolysis can be seen within hours after amputation in the
ectoderm The ectoderm is one of the three primary germ layers formed in early embryonic development. It is the outermost layer, and is superficial to the mesoderm (the middle layer) and endoderm (the innermost layer). It emerges and originates from t ...
and
mesoderm The mesoderm is the middle layer of the three germ layers that develops during gastrulation in the very early development of the embryo of most animals. The outer layer is the ectoderm, and the inner layer is the endoderm.Langman's Medical Emb ...
. Amputation is also thought to cause a large migration of cells to the injury site, and these form a wound plug.


Echinoderms

Tissue regeneration is widespread among echinoderms and has been well documented in
starfish Starfish or sea stars are star-shaped echinoderms belonging to the class Asteroidea (). Common usage frequently finds these names being also applied to ophiuroids, which are correctly referred to as brittle stars or basket stars. Starfish a ...
''(Asteroidea)'',
sea cucumber Sea cucumbers are echinoderms from the class Holothuroidea (). They are marine animals with a leathery skin and an elongated body containing a single, branched gonad. Sea cucumbers are found on the sea floor worldwide. The number of holothuri ...
s ''(Holothuroidea)'', and sea urchins ''(Echinoidea).'' Appendage regeneration in echinoderms has been studied since at least the 19th century. In addition to appendages, some species can regenerate internal organs and parts of their central nervous system. In response to injury starfish can autotomize damaged appendages. Autotomy is the self-amputation of a body part, usually an appendage.  Depending on severity, starfish will then go through a four-week process where the appendage will be regenerated. Some species must retain mouth cells to regenerate an appendage, due to the need for energy. The first organs to regenerate, in all species documented to date, are associated with the digestive tract. Thus, most knowledge about visceral regeneration in holothurians concerns this system.


Planaria (Platyhelminthes)

Regeneration research using Planarians began in the late 1800s and was popularized by T.H. Morgan at the beginning of the 20th century. Alejandro Sanchez-Alvarado and Philip Newmark transformed planarians into a model genetic organism in the beginning of the 20th century to study the molecular mechanisms underlying regeneration in these animals. Planarians exhibit an extraordinary ability to regenerate lost body parts. For example, a planarian split lengthwise or crosswise will regenerate into two separate individuals. In one experiment, T.H. Morgan found that a piece corresponding to 1/279th of a planarian or a fragment with as few as 10,000 cells can successfully regenerate into a new worm within one to two weeks. After amputation, stump cells form a
blastema A blastema ( Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how bla ...
formed from
neoblast Neoblasts (ˈniːəʊˌblæst) are non-differentiated cells found in flatworms called planarians. Neoblasts make up about 30 percent of all cells in planaria. Neoblasts give planarians an extraordinary ability to regenerate lost body parts ...
s, pluripotent cells found throughout the planarian body. New tissue grows from neoblasts with neoblasts comprising between 20 and 30% of all planarian cells. Recent work has confirmed that neoblasts are totipotent since one single neoblast can regenerate an entire irradiated animal that has been rendered incapable of regeneration. In order to prevent starvation a planarian will use their own cells for energy, this phenomenon is known as de-growth.


Amphibians

Limb regeneration in the
axolotl The axolotl (; from nci, āxōlōtl ), ''Ambystoma mexicanum'', is a paedomorphic salamander closely related to the tiger salamander. Axolotls are unusual among amphibians in that they reach adulthood without undergoing metamorphosis. I ...
and newt has been extensively studied and researched. The nineteenth century studies of this subject are reviewed in Holland (2021). Urodele amphibians, such as salamanders and newts, display the highest regenerative ability among tetrapods. As such, they can fully regenerate their limbs, tail, jaws, and retina via epimorphic regeneration leading to functional replacement with new tissue. Salamander limb regeneration occurs in two main steps. First, the local cells dedifferentiate at the wound site into progenitor to form a
blastema A blastema ( Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how bla ...
. Second, the blastemal cells will undergo
cell proliferation Cell proliferation is the process by which ''a cell grows and divides to produce two daughter cells''. Cell proliferation leads to an exponential increase in cell number and is therefore a rapid mechanism of tissue growth. Cell proliferation r ...
, patterning,
cell differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
and tissue growth using similar genetic mechanisms that deployed during embryonic development. Ultimately, blastemal cells will generate all the cells for the new structure. After amputation, the epidermis migrates to cover the stump in 1–2 hours, forming a structure called the wound epithelium (WE). Epidermal cells continue to migrate over the WE, resulting in a thickened, specialized signaling center called the apical epithelial cap (AEC). Over the next several days there are changes in the underlying stump tissues that result in the formation of a
blastema A blastema ( Greek ''βλάστημα'', "offspring") is a mass of cells capable of growth and regeneration into organs or body parts. The changing definition of the word "blastema" has been reviewed by Holland (2021). A broad survey of how bla ...
(a mass of dedifferentiated proliferating cells). As the blastema forms, pattern formation genes – such as HoxA and HoxD – are activated as they were when the limb was formed in the
embryo An embryo is an initial stage of development of a multicellular organism. In organisms that reproduce sexually, embryonic development is the part of the life cycle that begins just after fertilization of the female egg cell by the male spe ...
. The positional identity of the
distal Standard anatomical terms of location are used to unambiguously describe the anatomy of animals, including humans. The terms, typically derived from Latin or Greek roots, describe something in its standard anatomical position. This position pro ...
tip of the limb (i.e. the autopod, which is the hand or foot) is formed first in the blastema. Intermediate positional identities between the stump and the distal tip are then filled in through a process called intercalation.
Motor neuron A motor neuron (or motoneuron or efferent neuron) is a neuron whose cell body is located in the motor cortex, brainstem or the spinal cord, and whose axon (fiber) projects to the spinal cord or outside of the spinal cord to directly or indirect ...
s, muscle, and blood vessels grow with the regenerated limb, and reestablish the connections that were present prior to amputation. The time that this entire process takes varies according to the age of the animal, ranging from about a month to around three months in the adult and then the limb becomes fully functional. Researchers at Australian Regenerative Medicine Institute at
Monash University Monash University () is a public research university based in Melbourne, Victoria, Australia. Named for prominent World War I general Sir John Monash, it was founded in 1958 and is the second oldest university in the state. The university has ...
have published that when
macrophages Macrophages (abbreviated as M φ, MΦ or MP) ( el, large eaters, from Greek ''μακρός'' (') = large, ''φαγεῖν'' (') = to eat) are a type of white blood cell of the immune system that engulfs and digests pathogens, such as cancer ce ...
, which eat up material debris, were removed, salamanders lost their ability to regenerate and formed scarred tissue instead. * In spite of the historically few researchers studying limb regeneration, remarkable progress has been made recently in establishing the neotenous amphibian the axolotl (''Ambystoma mexicanum'') as a model genetic organism. This progress has been facilitated by advances in
genomics Genomics is an interdisciplinary field of biology focusing on the structure, function, evolution, mapping, and editing of genomes. A genome is an organism's complete set of DNA, including all of its genes as well as its hierarchical, three-dim ...
,
bioinformatics Bioinformatics () is an interdisciplinary field that develops methods and software tools for understanding biological data, in particular when the data sets are large and complex. As an interdisciplinary field of science, bioinformatics combi ...
, and
somatic cell A somatic cell (from Ancient Greek σῶμα ''sôma'', meaning "body"), or vegetal cell, is any biological cell forming the body of a multicellular organism other than a gamete, germ cell, gametocyte or undifferentiated stem cell. Such cells com ...
transgenesis Gene delivery is the process of introducing foreign genetic material, such as DNA or RNA, into host cells. Gene delivery must reach the genome of the host cell to induce gene expression. Successful gene delivery requires the foreign gene deli ...
in other fields, that have created the opportunity to investigate the mechanisms of important biological properties, such as limb regeneration, in the axolotl. The Ambystoma Genetic Stock Center (AGSC) is a self-sustaining, breeding colony of the axolotl supported by the
National Science Foundation The National Science Foundation (NSF) is an independent agency of the United States government that supports fundamental research and education in all the non-medical fields of science and engineering. Its medical counterpart is the National ...
as a Living Stock Collection. Located at the University of Kentucky, the AGSC is dedicated to supplying genetically well-characterized axolotl embryos, larvae, and adults to laboratories throughout the United States and abroad. An NIH-funded NCRR grant has led to the establishment of the Ambystoma EST database, the Salamander Genome Project (SGP) that has led to the creation of the first amphibian gene map and several annotated molecular data bases, and the creation of the research community web portal. In 2022, a first spatiotemporal map revealed key insights about axolotl brain regeneration, also providing the interactive ''Axolotl Regenerative Telencephalon Interpretation via Spatiotemporal Transcriptomic Atlas ''.


Frog model

Anurans (frogs) can only regenerate their limbs during embryonic development. Reactive oxygen species (ROS) appear to be required for a regeneration response in the anuran larvae. ROS production is essential to activate the Wnt signaling pathway, which has been associated with regeneration in other systems. Once the limb skeleton has developed in frogs, regeneration does not occur (''Xenopus'' can grow a cartilaginous spike after amputation). The adult ''
Xenopus laevis The African clawed frog (''Xenopus laevis'', also known as the xenopus, African clawed toad, African claw-toed frog or the ''platanna'') is a species of African aquatic frog of the family Pipidae. Its name is derived from the three short claws o ...
'' is used as a model organism for regenerative medicine. In 2022, a cocktail of drugs and hormones ( 1,4-DPCA, BDNF,
growth hormone Growth hormone (GH) or somatotropin, also known as human growth hormone (hGH or HGH) in its human form, is a peptide hormone that stimulates growth, cell reproduction, and cell regeneration in humans and other animals. It is thus important in ...
, resolvin D5, and retinoic acid), in a single dose lasting 24 hours, was shown to trigger long-term leg regenration in adult ''X. laevis''. Instead of a single spike, a paddle-shaped growth is obtained at the end of the limb by 18 months.


Hydra

''Hydra'' is a genus of freshwater polyp in the phylum
Cnidaria Cnidaria () is a phylum under kingdom Animalia containing over 11,000 species of aquatic animals found both in freshwater and marine environments, predominantly the latter. Their distinguishing feature is cnidocytes, specialized cells that ...
with highly proliferative stem cells that gives them the ability to regenerate their entire body. Any fragment larger than a few hundred
epithelial Epithelium or epithelial tissue is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. It is a thin, continuous, protective layer of compactly packed cells with a little intercellu ...
cells that is isolated from the body has the ability to regenerate into a smaller version of itself. The high proportion of stem cells in the hydra supports its efficient regenerative ability. Regeneration among hydra occurs as foot regeneration arising from the basal part of the body, and head regeneration, arising from the apical region. Regeneration tissues that are cut from the gastric region contain polarity, which allows them to distinguish between regenerating a head in the apical end and a foot in the basal end so that both regions are present in the newly regenerated organism. Head regeneration requires complex reconstruction of the area, while foot regeneration is much simpler, similar to tissue repair. In both foot and head regeneration, however, there are two distinct molecular cascades that occur once the tissue is wounded: early injury response and a subsequent, signal-driven pathway of the regenerating tissue that leads to
cellular differentiation Cellular differentiation is the process in which a stem cell alters from one type to a differentiated one. Usually, the cell changes to a more specialized type. Differentiation happens multiple times during the development of a multicellular ...
. This early-injury response includes epithelial cell stretching for wound closure, the migration of interstitial progenitors towards the wound, cell death, phagocytosis of cell debris, and reconstruction of the extracellular matrix. Regeneration in hydra has been defined as morphallaxis, the process where regeneration results from remodeling of existing material without cellular proliferation. If a hydra is cut into two pieces, the remaining severed sections form two fully functional and independent hydra, approximately the same size as the two smaller severed sections. This occurs through the exchange and rearrangement of soft tissues without the formation of new material.


Aves (birds)

Owing to a limited literature on the subject, birds are believed to have very limited regenerative abilities as adults. Some studies on roosters have suggested that birds can adequately regenerate some parts of the limbs and depending on the conditions in which regeneration takes place, such as age of the animal, the inter-relationship of the injured tissue with other muscles, and the type of operation, can involve complete regeneration of some musculoskeletal structure. Werber and Goldschmidt (1909) found that the goose and duck were capable of regenerating their beaks after partial amputation and Sidorova (1962) observed liver regeneration via hypertrophy in roosters. Birds are also capable of regenerating the hair cells in their cochlea following noise damage or ototoxic drug damage. Despite this evidence, contemporary studies suggest reparative regeneration in avian species is limited to periods during embryonic development. An array of molecular biology techniques have been successful in manipulating cellular pathways known to contribute to spontaneous regeneration in chick embryos. For instance, removing a portion of the elbow joint in a chick embryo via window excision or slice excision and comparing joint tissue specific markers and cartilage markers showed that window excision allowed 10 out of 20 limbs to regenerate and expressed joint genes similarly to a developing embryo. In contrast, slice excision did not allow the joint to regenerate due to the fusion of the skeletal elements seen by an expression of cartilage markers. Similar to the physiological regeneration of hair in mammals, birds can regenerate their feathers in order to repair damaged feathers or to attract mates with their plumage. Typically, seasonal changes that are associated with breeding seasons will prompt a hormonal signal for birds to begin regenerating feathers. This has been experimentally induced using thyroid hormones in the Rhode Island Red Fowls.


Mammals

Mammals are capable of cellular and physiological regeneration, but have generally poor reparative regenerative ability across the group. Examples of physiological regeneration in mammals include epithelial renewal (e.g., skin and intestinal tract), red blood cell replacement,
antler Antlers are extensions of an animal's skull found in members of the Cervidae (deer) family. Antlers are a single structure composed of bone, cartilage, fibrous tissue, skin, nerves, and blood vessels. They are generally found only on ...
regeneration and hair cycling. Male deer lose their antlers annually during the months of January to April then through regeneration are able to regrow them as an example of physiological regeneration. A deer antler is the only appendage of a mammal that can be regrown every year. While reparative regeneration is a rare phenomenon in mammals, it does occur. A well-documented example is regeneration of the digit tip distal to the nail bed. Reparative regeneration has also been observed in rabbits, pikas and African spiny mice. In 2012, researchers discovered that two species of African Spiny Mice, ''Acomys kempi'' and ''Acomys percivali'', were capable of completely regenerating the autotomically released or otherwise damaged tissue. These species can regrow hair follicles, skin, sweat glands, fur and cartilage. In addition to these two species, subsequent studies demonstrated that ''Acomys cahirinus'' could regenerate skin and excised tissue in the ear pinna. Despite these examples, it is generally accepted that adult
mammal Mammals () are a group of vertebrate animals constituting the class Mammalia (), characterized by the presence of mammary glands which in females produce milk for feeding (nursing) their young, a neocortex (a region of the brain), fur ...
s have limited regenerative capacity compared to most
vertebrate Vertebrates () comprise all animal taxa within the subphylum Vertebrata () ( chordates with backbones), including all mammals, birds, reptiles, amphibians, and fish. Vertebrates represent the overwhelming majority of the phylum Chordata, with ...
embryos/larvae, adult salamanders and fish. But the regeneration therapy approach of
Robert O. Becker Robert Otto Becker (May 31, 1923 − May 14, 2008) was a U.S. orthopedic surgeon and researcher in electrophysiology/electromedicine. He worked mainly as professor at Upstate Medical Center in State University of New York, Syracuse (New York), S ...
, using electrical stimulation, has shown promising results for rats and mammals in general. Some researchers have also claimed that the MRL mouse strain exhibits enhanced regenerative abilities. Work comparing the differential
gene expression Gene expression is the process by which information from a gene is used in the synthesis of a functional gene product that enables it to produce end products, protein or non-coding RNA, and ultimately affect a phenotype, as the final effect. T ...
of scarless healing MRL mice and a poorly-healing
C57BL/6 C57BL/6, often referred to as "C57 black 6", "C57" or "black 6", is a common inbred strain of laboratory mouse. It is the most widely used "genetic background" for genetically modified mice for use as models of human disease. They are the most wid ...
mouse strain, identified 36
gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or ''birth'' or ''gender'') can have several different meanings. The Mendelian gene is a b ...
s differentiating the healing process between MRL mice and other mice. Study of the regenerative process in these animals is aimed at discovering how to duplicate them in humans, such as deactivation of the p21 gene. * However, recent work has shown that MRL mice actually close small ear holes with scar tissue, rather than regeneration as originally claimed. MRL mice are not protected against
myocardial infarction A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops to the coronary artery of the heart, causing damage to the heart muscle. The most common symptom is chest pain or discomfort which ma ...
; heart regeneration in adult mammals ( neocardiogenesis) is limited, because heart muscle cells are nearly all terminally differentiated. MRL mice show the same amount of cardiac injury and scar formation as normal mice after a heart attack. However, recent studies provide evidence that this may not always be the case, and that MRL mice can regenerate after heart damage.


Humans

The regrowth of lost tissues or organs in the human body is being researched. Some tissues such as skin regrow quite readily; others have been thought to have little or no capacity for regeneration, but ongoing research suggests that there is some hope for a variety of tissues and organs. Human organs that have been regenerated include the bladder, vagina and the penis. As are all metazoans, humans are capable of physiological regeneration (i.e. the replacement of cells during homeostatic maintenance that does not necessitate injury). For example, the regeneration of red blood cells via erythropoiesis occurs through the maturation of erythrocytes from hematopoietic stem cells in the bone marrow, their subsequent circulation for around 90 days in the blood stream, and their eventual cell-death in the spleen. Another example of physiological regeneration is the sloughing and rebuilding of a functional endometrium during each menstrual cycle in females in response to varying levels of circulating estrogen and progesterone. However, humans are limited in their capacity for reparative regeneration, which occurs in response to injury. One of the most studied regenerative responses in humans is the hypertrophy of the liver following liver injury. For example, the original mass of the liver is re-established in direct proportion to the amount of liver removed following partial hepatectomy, which indicates that signals from the body regulate liver mass precisely, both positively and negatively, until the desired mass is reached. This response is considered cellular regeneration (a form of compensatory hypertrophy) where the function and mass of the liver is regenerated through the proliferation of existing mature hepatic cells (mainly
hepatocyte A hepatocyte is a cell of the main parenchymal tissue of the liver. Hepatocytes make up 80% of the liver's mass. These cells are involved in: * Protein synthesis * Protein storage * Transformation of carbohydrates * Synthesis of cholesterol, ...
s), but the exact morphology of the liver is not regained. This process is driven by growth factor and cytokine regulated pathways. The normal sequence of inflammation and regeneration does not function accurately in cancer. Specifically, cytokine stimulation of cells leads to expression of genes that change cellular functions and suppress the immune response. Adult neurogenesis is also a form of cellular regeneration. For example, hippocampal neuron renewal occurs in normal adult humans at an annual turnover rate of 1.75% of neurons. Cardiac myocyte renewal has been found to occur in normal adult humans, and at a higher rate in adults following acute heart injury such as infarction. Even in adult
myocardium Cardiac muscle (also called heart muscle, myocardium, cardiomyocytes and cardiac myocytes) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle tha ...
following infarction, proliferation is only found in around 1% of myocytes around the area of injury, which is not enough to restore function of
cardiac muscle Cardiac muscle (also called heart muscle, myocardium, cardiomyocytes and cardiac myocytes) is one of three types of vertebrate muscle tissues, with the other two being skeletal muscle and smooth muscle. It is an involuntary, striated muscle ...
. However, this may be an important target for regenerative medicine as it implies that regeneration of cardiomyocytes, and consequently of myocardium, can be induced. Another example of reparative regeneration in humans is fingertip regeneration, which occurs after phalange amputation distal to the nail bed (especially in children) and rib regeneration, which occurs following osteotomy for
scoliosis Scoliosis is a condition in which a person's spine has a sideways curve. The curve is usually "S"- or "C"-shaped over three dimensions. In some, the degree of curve is stable, while in others, it increases over time. Mild scoliosis does not ty ...
treatment (though usually regeneration is only partial and may take up to one year). Yet another example of regeneration in humans is vas deferens regeneration, which occurs after a vasectomy and which results in vasectomy failure.


Reptiles

The ability and degree of regeneration in reptiles differs among the various species, but the most notable and well-studied occurrence is tail-regeneration in lizards. In addition to lizards, regeneration has been observed in the tails and maxillary bone of crocodiles and adult neurogenesis has also been noted. Tail regeneration has never been observed in
snakes Snakes are elongated, limbless, carnivorous reptiles of the suborder Serpentes . Like all other squamates, snakes are ectothermic, amniote vertebrates covered in overlapping scales. Many species of snakes have skulls with several more j ...
. Lizards possess the highest regenerative capacity as a group. Following autotomous tail loss, epimorphic regeneration of a new tail proceeds through a blastema-mediated process that results in a functionally and morphologically similar structure.


Chondrichthyes

It has been estimated that the average shark loses about 30,000 to 40,000 teeth in a lifetime. Leopard sharks routinely replace their teeth every 9–12 days and this is an example of physiological regeneration. This can occur because shark teeth are not attached to a bone, but instead are developed within a bony cavity. Rhodopsin regeneration has been studied in skates and rays. After complete photo-bleaching, rhodopsin can completely regenerate within 2 hours in the
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which the ...
. White bamboo sharks can regenerate at least two-thirds of their liver and this has been linked to three micro RNAs, xtr-miR-125b, fru-miR-204, and has-miR-142-3p_R-. In one study, two-thirds of the liver was removed and within 24 hours more than half of the liver had undergone hypertrophy. Some sharks can regenerate scales and even skin following damage. Within two weeks of skin wounding,
mucus Mucus ( ) is a slippery aqueous secretion produced by, and covering, mucous membranes. It is typically produced from cells found in mucous glands, although it may also originate from mixed glands, which contain both serous and mucous cells. It ...
is secreted into the wound and this initiates the healing process. One study showed that the majority of the wounded area was regenerated within 4 months, but the regenerated area also showed a high degree of variability.


See also

*
Autotomy Autotomy (from the Greek ''auto-'', "self-" and ''tome'', "severing", αὐτοτομία) or self-amputation, is the behaviour whereby an animal sheds or discards one or more of its own appendages, usually as a self-defense mechanism to elude ...
* Regenerative medicine *
Neuroregeneration Neuroregeneration refers to the regrowth or repair of nervous tissues, cells or cell products. Such mechanisms may include generation of new neurons, glia, axons, myelin, or synapses. Neuroregeneration differs between the peripheral nervous syst ...
* Epimorphosis * Morphallaxis *
Polyphyodont A polyphyodont is any animal whose teeth are continually replaced. In contrast, diphyodonts are characterized by having only two successive sets of teeth. Polyphyodonts include most toothed fishes, many reptiles such as crocodiles and geckos, ...


Notes


Sources

* * * * * * * *


Further reading

* Kevin Strange and Viravuth Yin, "A Shot at Regeneration: A once abandoned drug compound shows an ability to rebuild organs damaged by illness and injury", ''
Scientific American ''Scientific American'', informally abbreviated ''SciAm'' or sometimes ''SA'', is an American popular science magazine. Many famous scientists, including Albert Einstein and Nikola Tesla, have contributed articles to it. In print since 1845, it ...
'', vol. 320, no. 4 (April 2019), pp. 56–61.


External links

* {{DEFAULTSORT:Regeneration (Biology) Healing Developmental biology Senescence