HOME

TheInfoList



OR:

In
mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, specifically in
elementary arithmetic The operators in elementary arithmetic are addition, subtraction, multiplication, and division. The operators can be applied on both real numbers and imaginary numbers. Each kind of number is represented on a number line designated to the type. ...
and
elementary algebra Elementary algebra encompasses the basic concepts of algebra. It is often contrasted with arithmetic: arithmetic deals with specified numbers, whilst algebra introduces variables (quantities without fixed values). This use of variables entai ...
, given an equation between two
fractions A fraction (from la, fractus, "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight ...
or rational expressions, one can cross-multiply to simplify the equation or determine the value of a variable. The method is also occasionally known as the "cross your heart" method because lines resembling a heart outline can be drawn to remember which things to multiply together. Given an equation like : \frac a b = \frac c d, where and are not zero, one can cross-multiply to get : ad = bc \quad \text \quad a = \fracd. In
Euclidean geometry Euclidean geometry is a mathematical system attributed to ancient Greek mathematics, Greek mathematician Euclid, which he described in his textbook on geometry: the ''Euclid's Elements, Elements''. Euclid's approach consists in assuming a small ...
the same calculation can be achieved by considering the
ratio In mathematics, a ratio shows how many times one number contains another. For example, if there are eight oranges and six lemons in a bowl of fruit, then the ratio of oranges to lemons is eight to six (that is, 8:6, which is equivalent to the ...
s as those of
similar triangle In Euclidean geometry, two objects are similar if they have the same shape, or one has the same shape as the mirror image of the other. More precisely, one can be obtained from the other by uniformly scaling (enlarging or reducing), possibly wi ...
s.


Procedure

In practice, the method of cross-multiplying means that we multiply the numerator of each (or one) side by the denominator of the other side, effectively crossing the terms over: : \frac a b \nwarrow \frac c d, \quad \frac a b \nearrow \frac c d. The mathematical justification for the method is from the following longer mathematical procedure. If we start with the basic equation : \frac a b = \frac c d, we can multiply the terms on each side by the same number, and the terms will remain equal. Therefore, if we multiply the fraction on each side by the product of the denominators of both sides——we get : \frac a b \times bd = \frac c d \times bd. We can reduce the fractions to lowest terms by noting that the two occurrences of on the left-hand side cancel, as do the two occurrences of on the right-hand side, leaving : ad = bc, and we can divide both sides of the equation by any of the elements—in this case we will use —getting : a = \fracd. Another justification of cross-multiplication is as follows. Starting with the given equation : \frac a b = \frac c d, multiply by = 1 on the left and by = 1 on the right, getting : \frac a b \times \frac d d = \frac c d \times \frac b b, and so : \frac = \frac. Cancel the common denominator = , leaving : ad = cb. Each step in these procedures is based on a single, fundamental property of
equation In mathematics, an equation is a formula that expresses the equality of two expressions, by connecting them with the equals sign . The word ''equation'' and its cognates in other languages may have subtly different meanings; for example, in ...
s. Cross-multiplication is a shortcut, an easily understandable procedure that can be taught to students.


Use

This is a common procedure in mathematics, used to reduce fractions or calculate a value for a given variable in a fraction. If we have an equation : \frac x b = \frac c d, where is a variable we are interested in solving for, we can use cross-multiplication to determine that : x = \fracd. For example, suppose we want to know how far a car will travel in 7 hours, if we know that its speed is constant and that it already travelled 90 miles in the last 3 hours. Converting the word problem into ratios, we get : \frac x = \frac . Cross-multiplying yields : x = \frac, and so : x = 210\ \text. Note that even simple equations like : a = \frac are solved using cross-multiplication, since the missing term is implicitly equal to 1: : \frac a 1 = \frac x d. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the
least common denominator In mathematics, the lowest common denominator or least common denominator (abbreviated LCD) is the lowest common multiple of the denominators of a set of fractions. It simplifies adding, subtracting, and comparing fractions. Description The l ...
. This step is called ''
clearing fractions In mathematics, the method of clearing denominators, also called clearing fractions, is a technique for simplifying an equation equating two expressions that each are a sum of rational expressions – which includes simple fractions. Example Co ...
''.


Rule of three

The rule of three was a historical shorthand version for a particular form of cross-multiplication that could be taught to students by rote. It was considered the height of
Colonial Colonial or The Colonial may refer to: * Colonial, of, relating to, or characteristic of a colony or colony (biology) Architecture * American colonial architecture * French Colonial * Spanish Colonial architecture Automobiles * Colonial (1920 au ...
maths education and still figures in the French national curriculum for secondary education, and in the primary education curriculum of Spain. For an equation of the form : \frac a b = \frac c x, where the variable to be evaluated is in the right-hand denominator, the rule of three states that : x = \fraca. In this context, is referred to as the ''extreme'' of the proportion, and and are called the ''means''. This rule was already known to Chinese mathematicians prior to the 2nd century CE, though it was not used in Europe until much later. The rule of three gained notoriety for being particularly difficult to explain.
Cocker's Arithmetick ''Cocker's Arithmetick'', also known by its full title "Cocker's Arithmetick: Being a Plain and Familiar Method Suitable to the Meanest Capacity for the Full Understanding of That Incomparable Art, As It Is Now Taught by the Ablest School-Masters ...
, the premier textbook in the 17th century, introduces its discussion of the rule of three with the problem "If 4 yards of cloth cost 12 shillings, what will 6 yards cost at that rate?" The rule of three gives the answer to this problem directly; whereas in modern arithmetic, we would solve it by introducing a variable to stand for the cost of 6 yards of cloth, writing down the equation : \frac = \frac and then using cross-multiplication to calculate : : x = \frac = 18\ \text. An anonymous manuscript dated 1570 said: "Multiplication is vexation, / Division is as bad; / The Rule of three doth puzzle me, / And Practice drives me mad."


Double rule of three

An extension to the rule of three was the double rule of three, which involved finding an unknown value where five rather than three other values are known. An example of such a problem might be ''If 6 builders can build 8 houses in 100 days, how many days would it take 10 builders to build 20 houses at the same rate?'', and this can be set up as : \frac = \frac, which, with cross-multiplication twice, gives : x = \frac = 150\ \text.
Lewis Carroll Charles Lutwidge Dodgson (; 27 January 1832 – 14 January 1898), better known by his pen name Lewis Carroll, was an English author, poet and mathematician. His most notable works are ''Alice's Adventures in Wonderland'' (1865) and its sequel ...
's "
The Mad Gardener's Song "The Mad Gardener's Song" is a poem by Lewis Carroll that appears in his book '' Sylvie and Bruno'' (1889, 1893). Structure The poem consists of nine stanzas, each of six lines. Each stanza contains alternating lines of iambic tetrameter and ia ...
" includes the lines "He thought he saw a Garden-Door / That opened with a key: / He looked again, and found it was / A double Rule of Three".'' Sylvie and Bruno'', Chapter 12.


See also

*
Cross-ratio In geometry, the cross-ratio, also called the double ratio and anharmonic ratio, is a number associated with a list of four collinear points, particularly points on a projective line. Given four points ''A'', ''B'', ''C'' and ''D'' on a line, the ...
*
Odds ratio An odds ratio (OR) is a statistic that quantifies the strength of the association between two events, A and B. The odds ratio is defined as the ratio of the odds of A in the presence of B and the odds of A in the absence of B, or equivalently (due ...
*
Turn (angle) A turn is a unit of plane angle measurement equal to  radians, 360  degrees or 400 gradians. Subdivisions of a turn include half-turns, quarter-turns, centiturns, milliturns, etc. The closely related terms ''cycle'' and ''revol ...


References


Further reading

* Brian Burell: ''Merriam-Webster's Guide to Everyday Math: A Home and Business Reference''. Merriam-Webster, 1998, , pp
85-101






- facsimile of the relevant section * ttp://brunelleschi.imss.fi.it/michaelofrhodes/math_toolkit_three.html The Rule of Three as applied by Michael of Rhodes in the fifteenth century* ttp://www.rhymes.org.uk/a61-multiplication.htm The Rule Of Three in Mother Goose
Rudyard Kipling: You can work it out by Fractions or by simple Rule of Three, But the way of Tweedle-dum is not the way of Tweedle-dee.


External links

* {{Authority control Fractions (mathematics) Arithmetic