The syntax of the
Ruby programming language
Ruby is an interpreted, high-level, general-purpose programming language which supports multiple programming paradigms. It was designed with an emphasis on programming productivity and simplicity. In Ruby, everything is an object, including p ...
is broadly similar to that of
Perl
Perl is a family of two high-level, general-purpose, interpreted, dynamic programming languages. "Perl" refers to Perl 5, but from 2000 to 2019 it also referred to its redesigned "sister language", Perl 6, before the latter's name was offic ...
and
Python
Python may refer to:
Snakes
* Pythonidae, a family of nonvenomous snakes found in Africa, Asia, and Australia
** ''Python'' (genus), a genus of Pythonidae found in Africa and Asia
* Python (mythology), a mythical serpent
Computing
* Python (pro ...
. Class and method definitions are signaled by keywords, whereas code blocks can be defined by either keywords or braces. In contrast to Perl, variables are not obligatorily prefixed with a
sigil
A sigil () is a type of symbol used in magic. The term has usually referred to a pictorial signature of a deity or spirit. In modern usage, especially in the context of chaos magic, sigil refers to a symbolic representation of the practitioner ...
. When used, the sigil changes the semantics of scope of the variable. For practical purposes there is no distinction between
expressions and
statements
Statement or statements may refer to: Common uses
*Statement (computer science), the smallest standalone element of an imperative programming language
*Statement (logic), declarative sentence that is either true or false
*Statement, a declarative ...
.
Line breaks are significant and taken as the end of a statement; a semicolon may be equivalently used. Unlike Python, indentation is not significant.
One of the differences from Python and Perl is that Ruby keeps all of its instance variables completely private to the class and only exposes them through accessor methods (
attr_writer
,
attr_reader
, etc.). Unlike the "getter" and "setter" methods of other languages like
C++
C++ (pronounced "C plus plus") is a high-level general-purpose programming language created by Danish computer scientist Bjarne Stroustrup as an extension of the C programming language, or "C with Classes". The language has expanded significan ...
or
Java
Java (; id, Jawa, ; jv, ꦗꦮ; su, ) is one of the Greater Sunda Islands in Indonesia. It is bordered by the Indian Ocean to the south and the Java Sea to the north. With a population of 151.6 million people, Java is the world's mos ...
, accessor methods in Ruby can be created with a single line of code via
metaprogramming
Metaprogramming is a programming technique in which computer programs have the ability to treat other programs as their data. It means that a program can be designed to read, generate, analyze or transform other programs, and even modify itself ...
; however, accessor methods can also be created in the traditional fashion of C++ and Java. As invocation of these methods does not require the use of parentheses, it is trivial to change an instance variable into a full function without modifying a single line of calling code or having to do any refactoring achieving similar functionality to
C# and
VB.NET
Visual Basic, originally called Visual Basic .NET (VB.NET), is a multi-paradigm, object-oriented programming language, implemented on .NET, Mono, and the .NET Framework. Microsoft launched VB.NET in 2002 as the successor to its original Visua ...
property members.
Python's property descriptors are similar, but come with a trade-off in the development process. If one begins in Python by using a publicly exposed instance variable, and later changes the implementation to use a private instance variable exposed through a property descriptor, code internal to the class may need to be adjusted to use the private variable rather than the public property. Ruby's design forces all instance variables to be private, but also provides a simple way to declare
set
and
get
methods. This is in keeping with the idea that in Ruby one never directly accesses the internal members of a class from outside the class; rather, one passes a message to the class and receives a response.
Interactive sessions
The following examples can be run in a Ruby shell such as
Interactive Ruby Shell
Ruby is an interpreted, high-level, general-purpose programming language which supports multiple programming paradigms. It was designed with an emphasis on programming productivity and simplicity. In Ruby, everything is an object, including p ...
, or saved in a file and run from the command line by typing
ruby ''''
.
Classic
Hello world
''Hello'' is a salutation or greeting in the English language. It is first attested in writing from 1826. Early uses
''Hello'', with that spelling, was used in publications in the U.S. as early as the 18 October 1826 edition of the '' Norwich ...
example:
puts 'Hello World!'
Some basic Ruby code:
# Everything, including a literal, is an object, so this works:
-199.abs # => 199
'ice is nice'.length # => 11
'ruby is cool.'.index('u') # => 1
"Nice Day Isn't It?".downcase.split('').uniq.sort.join
# => " '?acdeinsty"
Input:
print 'Please type name >'
name = gets.chomp
puts "Hello #."
Conversions:
puts 'Give me a number'
number = gets.chomp
puts number.to_i
output_number = number.to_i + 1
puts output_number.to_s + ' is a bigger number.'
Strings
There are a variety of ways to define strings in Ruby.
The following assignments are equivalent:
a = "\nThis is a double-quoted string\n"
a = %Q
a = %
a = %/\nThis is a double-quoted string\n/
a = <<-BLOCK
This is a double-quoted string
BLOCK
Strings support
variable interpolation
In computer programming, string interpolation (or variable interpolation, variable substitution, or variable expansion) is the process of evaluating a string literal containing one or more placeholders, yielding a result in which the placeholders ...
:
var = 3.14159
"pi is #"
=> "pi is 3.14159"
The following assignments are equivalent and produce
raw strings:
a = 'This is a single-quoted string'
a = %q
Collections
Constructing and using an
array
An array is a systematic arrangement of similar objects, usually in rows and columns.
Things called an array include:
{{TOC right
Music
* In twelve-tone and serial composition, the presentation of simultaneous twelve-tone sets such that the ...
:
a = ,_'hello',_14.5,_1,_2,_[6,_15
a[2.html" ;"title=",_15.html" ;"title=", 'hello', 14.5, 1, 2, [6, 15">, 'hello', 14.5, 1, 2, [6, 15
a[2">,_15.html" ;"title=", 'hello', 14.5, 1, 2, [6, 15">, 'hello', 14.5, 1, 2, [6, 15
a[2# => 14.5
a.[](2) # => 14.5
a.reverse # => 6, 15], 2, 1, 14.5, 'hello', 3]
a.flatten.uniq # => [3, 'hello', 14.5, 1, 2, 6, 15]
Constructing and using an associative array (in Ruby, called a ''hash''):
hash = Hash.new # equivalent to hash =
hash = # makes the previous line redundant as we are now
# assigning hash to a new, separate hash object
puts hashfire
Fire is the rapid oxidation of a material (the fuel) in the exothermic chemical process of combustion, releasing heat, light, and various reaction products.
At a certain point in the combustion reaction, called the ignition point, flames a ...
# prints "hot"
hash.each_pair do , key, value, # or: hash.each do , key, value,
puts "# is #"
end
# returns and prints:
# water is wet
# fire is hot
hash.delete :water # deletes the pair :water => 'wet' and returns "wet"
hash.delete_if # deletes the pair :fire => 'hot' and returns
Control structures
If statement:
# Generate a random number and print whether it's even or odd.
if rand(100).even?
puts "It's even"
else
puts "It's odd"
end
Blocks and iterators
The two syntaxes for creating a code block:
# note the braces
# or:
do
puts 'Hello, World!'
end
A code block can be passed to a method as an optional block argument. Many built-in methods have such arguments:
File.open('file.txt', 'w') do , file, # 'w' denotes "write mode"
file.puts 'Wrote some text.'
end # file is automatically closed here
File.readlines('file.txt').each do , line,
puts line
end
# => Wrote some text.
Parameter-passing a block to be a
closure:
# In an object instance variable (denoted with '@'), remember a block.
def remember(&a_block)
@block = a_block
end
# Invoke the preceding method, giving it a block that takes a name.
remember
# Call the closure (note that this happens not to close over any free variables):
@block.call('Jon') # => "Hello, Jon!"
Creating an
anonymous function:
proc
Proc.new
lambda
->(arg) # introduced in Ruby 1.9
Returning
closures from a method:
def create_set_and_get(initial_value=0) # note the default value of 0
closure_value = initial_value
Proc.new , Proc.new end
setter, getter = create_set_and_get # returns two values
setter.call(21)
getter.call # => 21
# Parameter variables can also be used as a binding for the closure,
# so the preceding can be rewritten as:
def create_set_and_get(closure_value=0)
proc , proc end
Yielding the flow of program control to a block that was provided at calling time:
def use_hello
yield "hello"
end
# Invoke the preceding method, passing it a block.
use_hello # => 'hello'
Iterating over enumerations and arrays using blocks:
array = , 'hi', 3.14array.each
# prints:
# 1
# 'hi'
# 3.14
array.each_index
# prints:
# 0: 1
# 1: 'hi'
# 2: 3.14
# The following uses a (a..b) Range
(3..6).each
# prints:
# 3
# 4
# 5
# 6
# The following uses a (a...b) Range
(3...6).each
# prints:
# 3
# 4
# 5
A method such as
inject
can accept both a parameter and a block. The
inject
method iterates over each member of a list, performing some function on it while retaining an aggregate. This is analogous to the
foldl
function in
functional programming languages
In computer science, functional programming is a programming paradigm where programs are constructed by applying and composing functions. It is a declarative programming paradigm in which function definitions are trees of expressions that m ...
. For example:
,3,5inject(10) # => 19
On the first pass, the block receives 10 (the argument to inject) as
sum
, and 1 (the first element of the array) as
element
. This returns 11, which then becomes
sum
on the next pass. It is added to 3 to get 14, which is then added to 5 on the third pass, to finally return 19.
Using an enumeration and a block to square the numbers 1 to 10 (using a ''range''):
(1..10).collect # => , 4, 9, 16, 25, 36, 49, 64, 81, 100
Or invoke a method on each item (
map
is a synonym for
collect
):
(1..5).map(&:to_f) # => .0, 2.0, 3.0, 4.0, 5.0
Classes
The following code defines a class named
Person
. In addition to
initialize
, the usual constructor to create new objects, it has two methods: one to override the
<=>
comparison operator (so
Array#sort
can sort by age) and the other to override the
to_s
method (so
Kernel#puts
can format its output). Here,
attr_reader
is an example of metaprogramming in Ruby:
attr_accessor
defines getter and setter methods of instance variables, but
attr_reader
only getter methods. The last evaluated statement in a method is its return value, allowing the omission of an explicit
return
statement.
class Person
attr_reader :name, :age
def initialize(name, age)
@name, @age = name, age
end
def <=>(person) # the comparison operator for sorting
@age <=> person.age
end
def to_s
"# (#)"
end
end
group = Person.new("Bob", 33),
Person.new("Chris", 16),
Person.new("Ash", 23)
puts group.sort.reverse
The preceding code prints three names in reverse age order:
Bob (33)
Ash (23)
Chris (16)
Person
is a constant and is a reference to a
Class
object.
Open classes
In Ruby, classes are never closed: methods can always be added to an existing class. This applies to ''all'' classes, including the standard, built-in classes. All that is needed to do is open up a class definition for an existing class, and the new contents specified will be added to the existing contents. A simple example of adding a new method to the standard library's
Time
class:
# re-open Ruby's Time class
class Time
def yesterday
self - 86400
end
end
today = Time.now # => 2013-09-03 16:09:37 +0300
yesterday = today.yesterday # => 2013-09-02 16:09:37 +0300
Adding methods to previously defined classes is often called
monkey-patching. If performed recklessly, the practice can lead to both behavior collisions with subsequent unexpected results and code scalability problems.
Since Ruby 2.0 it has been possible to us
refinementsto reduce the potentially negative consequences of monkey-patching, by limiting the scope of the patch to particular areas of the code base.
# re-open Ruby's Time class
module RelativeTimeExtensions
refine Time do
def half_a_day_ago
self - 43200
end
end
end
module MyModule
class MyClass
# Allow the refinement to be used
using RelativeTimeExtensions
def window
Time.now.half_a_day_ago
end
end
end
Exceptions
An exception is raised with a
raise
call:
raise
An optional message can be added to the exception:
raise "This is a message"
Exceptions can also be specified by the programmer:
raise ArgumentError, "Illegal arguments!"
Alternatively, an exception instance can be passed to the
raise
method:
raise ArgumentError.new("Illegal arguments!")
This last construct is useful when raising an instance of a custom exception class featuring a constructor that takes more than one argument:
class ParseError < Exception
def initialize(input, line, pos)
super "Could not parse '#' at line #, position #"
end
end
raise ParseError.new("Foo", 3, 9)
Exceptions are handled by the
rescue
clause. Such a clause can catch exceptions that inherit from
StandardError
. Other flow control keywords that can be used when handling exceptions are
else
and
ensure
:
begin
# do something
rescue
# handle exception
else
# do this if no exception was raised
ensure
# do this whether or not an exception was raised
end
It is a common mistake to attempt to catch all exceptions with a simple rescue clause. To catch all exceptions one must write:
begin
# do something
rescue Exception
# Exception handling code here.
# Don't write only "rescue"; that only catches StandardError, a subclass of Exception.
end
Or catch particular exceptions:
begin
# do something
rescue RuntimeError
# handle only RuntimeError and its subclasses
end
It is also possible to specify that the exception object be made available to the handler clause:
begin
# do something
rescue RuntimeError => e
# handling, possibly involving e, such as "puts e.to_s"
end
Alternatively, the most recent exception is stored in the magic global
$!
.
Several exceptions can also be caught:
begin
# do something
rescue RuntimeError, Timeout::Error => e
# handling, possibly involving e
end
Metaprogramming
Ruby code can programmatically modify, at
runtime, aspects of its own structure that would be fixed in more rigid languages, such as class and method definitions. This sort of
metaprogramming
Metaprogramming is a programming technique in which computer programs have the ability to treat other programs as their data. It means that a program can be designed to read, generate, analyze or transform other programs, and even modify itself ...
can be used to write more concise code and effectively extend the language.
For example, the following Ruby code generates new methods for the built-in
String
class, based on a list of colors. The methods wrap the contents of the string with an HTML tag styled with the respective color.
COLORS =
class String
COLORS.each do , color,code,
define_method "in_#" do
"#"
end
end
end
The generated methods could then be used like this:
"Hello, World!".in_blue
=> "Hello, World!"
To implement the equivalent in many other languages, the programmer would have to write each method (
in_black
,
in_red
,
in_green
, etc.) separately.
Some other possible uses for Ruby metaprogramming include:
* intercepting and modifying method calls
* implementing new inheritance models
* dynamically generating classes from parameters
* automatic object serialization
* interactive help and debugging
References
{{refs, refs=
[{{ cite web, title= uby-talk:01120Re: The value of while..., quote=In Ruby's syntax, statement is just a special case of an expression that cannot appear as an argument (e.g. multiple assignment)., url=http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/1120]
[{{ cite web, title= uby-talk:02460Re: Precedence question, quote=statement ..can not be part of expression unless grouped within parentheses., url=http://blade.nagaokaut.ac.jp/cgi-bin/scat.rb/ruby/ruby-talk/2460]
Programming language syntax