Definitions
The following section contains an overview of the basic framework of rough set theory, as originally proposed by Zdzisław I. Pawlak, along with some of the key definitions. More formal properties and boundaries of rough sets can be found in Pawlak (1991) and cited references. The initial and basic theory of rough sets is sometimes referred to as ''"Pawlak Rough Sets"'' or ''"classical rough sets"'', as a means to distinguish from more recent extensions and generalizations.Information system framework
Let be an information system ( attribute–value system), where is a non-empty, finite set of objects (the universe) and is a non-empty, finite set of attributes such that for every . is the set of values that attribute may take. The information table assigns a value from to each attribute and object in the universe . With any there is an associatedExample: equivalence-class structure
For example, consider the following information table: : When the full set of attributes is considered, we see that we have the following seven equivalence classes: : Thus, the two objects within the first equivalence class, , cannot be distinguished from each other based on the available attributes, and the three objects within the second equivalence class, , cannot be distinguished from one another based on the available attributes. The remaining five objects are each discernible from all other objects. It is apparent that different attribute subset selections will in general lead to different indiscernibility classes. For example, if attribute alone is selected, we obtain the following, much coarser, equivalence-class structure: :Definition of a ''rough set''
Let be a target set that we wish to represent using attribute subset ; that is, we are told that an arbitrary set of objects comprises a single class, and we wish to express this class (i.e., this subset) using the equivalence classes induced by attribute subset . In general, cannot be expressed exactly, because the set may include and exclude objects which are indistinguishable on the basis of attributes . For example, consider the target set , and let attribute subset , the full available set of features. The set cannot be expressed exactly, because in , objects are indiscernible. Thus, there is no way to represent any set which ''includes'' but ''excludes'' objects and . However, the target set can be ''approximated'' using only the information contained within by constructing the -lower and -upper approximations of : : :Lower approximation and positive region
The ''-lower approximation'', or ''positive region'', is the union of all equivalence classes in which are contained by (i.e., are subsets of) the target set – in the example, , the union of the two equivalence classes in which are contained in the target set. The lower approximation is the complete set of objects in that can be ''positively'' (i.e., unambiguously) classified as belonging to target set .Upper approximation and negative region
The ''-upper approximation'' is the union of all equivalence classes in which have non-empty intersection with the target set – in the example, , the union of the three equivalence classes in that have non-empty intersection with the target set. The upper approximation is the complete set of objects that in that ''cannot'' be positively (i.e., unambiguously) classified as belonging to the ''complement'' () of the target set . In other words, the upper approximation is the complete set of objects that are ''possibly'' members of the target set . The set therefore represents the ''negative region'', containing the set of objects that can be definitely ruled out as members of the target set.Boundary region
The ''boundary region'', given by set difference , consists of those objects that can neither be ruled in nor ruled out as members of the target set . In summary, the lower approximation of a target set is a ''conservative'' approximation consisting of only those objects which can positively be identified as members of the set. (These objects have no indiscernible "clones" which are excluded by the target set.) The upper approximation is a ''liberal'' approximation which includes all objects that might be members of target set. (Some objects in the upper approximation may not be members of the target set.) From the perspective of , the lower approximation contains objects that are members of the target set with certainty (probability = 1), while the upper approximation contains objects that are members of the target set with non-zero probability (probability > 0).The rough set
The tuple composed of the lower and upper approximation is called a ''rough set''; thus, a rough set is composed of two crisp sets, one representing a ''lower boundary'' of the target set , and the other representing an ''upper boundary'' of the target set . The ''accuracy'' of the rough-set representation of the set can be given (Pawlak 1991) by the following: : That is, the accuracy of the rough set representation of , , , is the ratio of the number of objects which can ''positively'' be placed in to the number of objects that can ''possibly'' be placed in – this provides a measure of how closely the rough set is approximating the target set. Clearly, when the upper and lower approximations are equal (i.e., boundary region empty), then , and the approximation is perfect; at the other extreme, whenever the lower approximation is empty, the accuracy is zero (regardless of the size of the upper approximation).Objective analysis
Rough set theory is one of many methods that can be employed to analyse uncertain (including vague) systems, although less common than more traditional methods ofDefinability
In general, the upper and lower approximations are not equal; in such cases, we say that target set is ''undefinable'' or ''roughly definable'' on attribute set . When the upper and lower approximations are equal (i.e., the boundary is empty), , then the target set is ''definable'' on attribute set . We can distinguish the following special cases of undefinability: * Set is ''internally'' ''undefinable'' if and . This means that on attribute set , there are ''no'' objects which we can be certain belong to target set , but there ''are'' objects which we can definitively exclude from set . * Set is ''externally undefinable'' if and . This means that on attribute set , there ''are'' objects which we can be certain belong to target set , but there are ''no'' objects which we can definitively exclude from set . * Set is ''totally undefinable'' if and . This means that on attribute set , there are ''no'' objects which we can be certain belong to target set , and there are ''no'' objects which we can definitively exclude from set . Thus, on attribute set , we cannot decide whether any object is, or is not, a member of .Reduct and core
An interesting question is whether there are attributes in the information system (attribute–value table) which are more important to the knowledge represented in the equivalence class structure than other attributes. Often, we wonder whether there is a subset of attributes which can, by itself, fully characterize the knowledge in the database; such an attribute set is called a ''reduct''. Formally, a reduct is a subset of attributes such that * = , that is, the equivalence classes induced by the reduced attribute set are the same as the equivalence class structure induced by the full attribute set . * the attribute set is ''minimal'', in the sense that for any attribute ; in other words, no attribute can be removed from set without changing the equivalence classes . A reduct can be thought of as a ''sufficient'' set of features – sufficient, that is, to represent the category structure. In the example table above, attribute set is a reduct – the information system projected on just these attributes possesses the same equivalence class structure as that expressed by the full attribute set: : Attribute set is a reduct because eliminating any of these attributes causes a collapse of the equivalence-class structure, with the result that . The reduct of an information system is ''not unique'': there may be many subsets of attributes which preserve the equivalence-class structure (i.e., the knowledge) expressed in the information system. In the example information system above, another reduct is , producing the same equivalence-class structure as . The set of attributes which is common to all reducts is called the ''core'': the core is the set of attributes which is possessed by ''every'' reduct, and therefore consists of attributes which cannot be removed from the information system without causing collapse of the equivalence-class structure. The core may be thought of as the set of ''necessary'' attributes – necessary, that is, for the category structure to be represented. In the example, the only such attribute is ; any one of the other attributes can be removed singly without damaging the equivalence-class structure, and hence these are all ''dispensable''. However, removing by itself ''does'' change the equivalence-class structure, and thus is the ''indispensable'' attribute of this information system, and hence the core. It is possible for the core to be empty, which means that there is no indispensable attribute: any single attribute in such an information system can be deleted without altering the equivalence-class structure. In such cases, there is no ''essential'' or necessary attribute which is required for the class structure to be represented.Attribute dependency
One of the most important aspects of database analysis or data acquisition is the discovery of attribute dependencies; that is, we wish to discover which variables are strongly related to which other variables. Generally, it is these strong relationships that will warrant further investigation, and that will ultimately be of use in predictive modeling. In rough set theory, the notion of dependency is defined very simply. Let us take two (disjoint) sets of attributes, set and set , and inquire what degree of dependency obtains between them. Each attribute set induces an (indiscernibility) equivalence class structure, the equivalence classes induced by given by , and the equivalence classes induced by given by . Let , where is a given equivalence class from the equivalence-class structure induced by attribute set . Then, the ''dependency'' of attribute set on attribute set , , is given by : That is, for each equivalence class in , we add up the size of its lower approximation by the attributes in , i.e., . This approximation (as above, for arbitrary set ) is the number of objects which on attribute set can be positively identified as belonging to target set . Added across all equivalence classes in , the numerator above represents the total number of objects which – based on attribute set – can be positively categorized according to the classification induced by attributes . The dependency ratio therefore expresses the proportion (within the entire universe) of such classifiable objects. The dependency "can be interpreted as a proportion of such objects in the information system for which it suffices to know the values of attributes in to determine the values of attributes in ". Another, intuitive, way to consider dependency is to take the partition induced by as the target class , and consider as the attribute set we wish to use in order to "re-construct" the target class . If can completely reconstruct , then depends totally upon ; if results in a poor and perhaps a random reconstruction of , then does not depend upon at all. Thus, this measure of dependency expresses the degree of ''functional'' (i.e., deterministic) dependency of attribute set on attribute set ; it is ''not'' symmetric. The relationship of this notion of attribute dependency to more traditional information-theoretic (i.e., entropic) notions of attribute dependence has been discussed in a number of sources (e.g., Pawlak, Wong, & Ziarko 1988; Yao & Yao 2002; Wong, Ziarko, & Ye 1986, Quafafou & Boussouf 2000).Rule extraction
The category representations discussed above are all ''extensional'' in nature; that is, a category or complex class is simply the sum of all its members. To represent a category is, then, just to be able to list or identify all the objects belonging to that category. However, extensional category representations have very limited practical use, because they provide no insight for deciding whether novel (never-before-seen) objects are members of the category. What is generally desired is an ''intentional'' description of the category, a representation of the category based on a set of ''rules'' that describe the scope of the category. The choice of such rules is not unique, and therein lies the issue ofDecision matrices
Let us say that we wish to find the minimal set of consistent rules (LERS rule induction system
The data system LERS (Learning from Examples based on Rough Sets) Grzymala-Busse (1997) may induce rules from inconsistent data, i.e., data with conflicting objects. Two objects are conflicting when they are characterized by the same values of all attributes, but they belong to different concepts (classes). LERS uses rough set theory to compute lower and upper approximations for concepts involved in conflicts with other concepts. Rules induced from the lower approximation of the concept ''certainly'' describe the concept, hence such rules are called ''certain''. On the other hand, rules induced from the upper approximation of the concept describe the concept ''possibly'', so these rules are called ''possible''. For rule induction LERS uses three algorithms: LEM1, LEM2, and IRIM. The LEM2 algorithm of LERS is frequently used for rule induction and is used not only in LERS but also in other systems, e.g., in RSES (Bazan et al. (2004). LEM2 explores the search space of attribute–value pairs. Its input data set is a lower or upper approximation of a concept, so its input data set is always consistent. In general, LEM2 computes a local covering and then converts it into a rule set. We will quote a few definitions to describe the LEM2 algorithm. The LEM2 algorithm is based on an idea of an attribute–value pair block. Let be a nonempty lower or upper approximation of a concept represented by a decision-value pair . Set ''depends'' on a set of attribute–value pairs if and only if : Set is a ''minimal complex'' of if and only if depends on and no proper subset of exists such that depends on . Let be a nonempty collection of nonempty sets of attribute–value pairs. Then is a ''local covering'' of if and only if the following three conditions are satisfied: each member of is a minimal complex of , : : is minimal, i.e., has the smallest possible number of members. For our sample information system, LEM2 will induce the following rules: : Other rule-learning methods can be found, e.g., in Pawlak (1991), Stefanowski (1998), Bazan et al. (2004), etc.Incomplete data
Rough set theory is useful for rule induction from incomplete data sets. Using this approach we can distinguish between three types of missing attribute values: ''lost values'' (the values that were recorded but currently are unavailable), ''attribute-concept values'' (these missing attribute values may be replaced by any attribute value limited to the same concept), and ''"do not care" conditions'' (the original values were irrelevant). A ''concept'' (''class'') is a set of all objects classified (or diagnosed) the same way. Two special data sets with missing attribute values were extensively studied: in the first case, all missing attribute values were lost (Stefanowski and Tsoukias, 2001), in the second case, all missing attribute values were "do not care" conditions (Kryszkiewicz, 1999). In attribute-concept values interpretation of a missing attribute value, the missing attribute value may be replaced by any value of the attribute domain restricted to the concept to which the object with a missing attribute value belongs (Grzymala-Busse and Grzymala-Busse, 2007). For example, if for a patient the value of an attribute Temperature is missing, this patient is sick with flu, and all remaining patients sick with flu have values high or very-high for Temperature when using the interpretation of the missing attribute value as the attribute-concept value, we will replace the missing attribute value with high and very-high. Additionally, the ''characteristic relation'', (see, e.g., Grzymala-Busse and Grzymala-Busse, 2007) enables to process data sets with all three kind of missing attribute values at the same time: lost, "do not care" conditions, and attribute-concept values.Applications
Rough set methods can be applied as a component of hybrid solutions inHistory
The idea of rough set was proposed by Pawlak (1981) as a new mathematical tool to deal with vague concepts. Comer, Grzymala-Busse, Iwinski, Nieminen, Novotny, Pawlak, Obtulowicz, and Pomykala have studied algebraic properties of rough sets. Different algebraic semantics have been developed by P. Pagliani, I. Duntsch, M. K. Chakraborty, M. Banerjee and A. Mani; these have been extended to more generalized rough sets by D. Cattaneo and A. Mani, in particular. Rough sets can be used to representExtensions and generalizations
Since the development of rough sets, extensions and generalizations have continued to evolve. Initial developments focused on the relationship - both similarities and difference - withRough membership
Rough sets can be also defined, as a generalisation, by employing a rough membership function instead of objective approximation. The rough membership function expresses a conditional probability that belongs to given . This can be interpreted as a degree that belongs to in terms of information about expressed by . Rough membership primarily differs from the fuzzy membership in that the membership of union and intersection of sets cannot, in general, be computed from their constituent membership as is the case of fuzzy sets. In this, rough membership is a generalization of fuzzy membership. Furthermore, the rough membership function is grounded more in probability than the conventionally held concepts of the fuzzy membership function.Other generalizations
Several generalizations of rough sets have been introduced, studied and applied to solving problems. Here are some of these generalizations: *rough multisets (Grzymala-Busse, 1987) *fuzzy rough sets extend the rough set concept through the use of fuzzy equivalence classes(Nakamura, 1988) *Alpha rough set theory (α-RST) - a generalization of rough set theory that allows approximation using of fuzzy concepts (Quafafou, 2000) *intuitionistic fuzzy rough sets (Cornelis, De Cock and Kerre, 2003) *generalized rough fuzzy sets (Feng, 2010) *rough intuitionistic fuzzy sets (Thomas and Nair, 2011) *soft rough fuzzy sets and soft fuzzy rough sets (Meng, Zhang and Qin, 2011) *composite rough sets (Zhang, Li and Chen, 2014)See also
* Algebraic semantics *References
* * * * * * * * * Pawlak, Zdzisław ''Rough Sets'' Research Report PAS 431, Institute of Computer Science, Polish Academy of Sciences (1981) * * * * * * * * * * * * * * *Burgin M. (1990). Theory of Named Sets as a Foundational Basis for Mathematics, In Structures in mathematical theories: Reports of the San Sebastian international symposium, September 25–29, 1990 (http://www.blogg.org/blog-30140-date-2005-10-26.html) *Burgin, M. (2004). Unified Foundations of Mathematics, Preprint Mathematics LO/0403186, p39. (electronic edition: https://arxiv.org/ftp/math/papers/0403/0403186.pdf) *Burgin, M. (2011), Theory of Named Sets, Mathematics Research Developments, Nova Science Pub Inc, *Cornelis, C., De Cock, M. and Kerre, E. (2003) Intuitionistic fuzzy rough sets: at the crossroads of imperfect knowledge, Expert Systems, 20:5, pp260–270 *Düntsch, I. and Gediga, G. (1995) Rough Set Dependency Analysis in Evaluation Studies – An Application in the Study of Repeated Heart Attacks. University of Ulster, Informatics Research Reports No. 10 *Feng F. (2010). Generalized Rough Fuzzy Sets Based on Soft Sets, Soft Computing, 14:9, pp 899–911 *Grzymala-Busse, J. (1987). Learning from examples based on rough multisets, in Proceedings of the 2nd International Symposium on Methodologies for Intelligent Systems, pp. 325–332. Charlotte, NC, USA, *Meng, D., Zhang, X. and Qin, K. (2011). Soft rough fuzzy sets and soft fuzzy rough sets, Computers & Mathematics with Applications, 62:12, pp4635–4645 *Quafafou M. (2000). α-RST: a generalization of rough set theory, Information Sciences, 124:1–4, pp301–316. *Quafafou M. and Boussouf M. (2000). Generalized rough sets based feature selection. Journal Intelligent Data Analysis, 4:1 pp3 – 17 *Nakamura, A. (1988) Fuzzy rough sets, ‘Notes on Multiple-valued Logic in Japan’, 9:1, pp1–8 *Pawlak, Z., Grzymala-Busse, J., Slowinski, R. Ziarko, W. (1995). Rough Sets. Communications of the ACM, 38:11, pp88–95 *Thomas, K. and Nair, L. (2011). Rough intuitionistic fuzzy sets in a lattice, International Mathematical Forum, 6:27, pp1327–1335 *Zhang J., Li T., Chen H. (2014). Composite rough sets for dynamic data mining, Information Sciences, 257, pp81–100 *Zhang J., Wong J-S, Pan Y, Li T. (2015). A parallel matrix-based method for computing approximations in incomplete information systems, IEEE Transactions on Knowledge and Data Engineering, 27(2): 326-339 *Chen H., Li T., Luo C., Horng S-J., Wang G. (2015). A decision-theoretic rough set approach for dynamic data mining. IEEE Transactions on Fuzzy Systems, 23(6): 1958-1970 *Chen H., Li T., Luo C., Horng S-J., Wang G. (2014). A rough set-based method for updating decision rules on attribute values' coarsening and refining, IEEE Transactions on Knowledge and Data Engineering, 26(12): 2886-2899 *Chen H., Li T., Ruan D., Lin J., Hu C, (2013) A rough-set based incremental approach for updating approximations under dynamic maintenance environments. IEEE Transactions on Knowledge and Data Engineering, 25(2): 274-284Further reading
* Gianpiero Cattaneo and Davide Ciucci, "Heyting Wajsberg Algebras as an Abstract Environment Linking Fuzzy and Rough Sets" in J.J. Alpigini et al. (Eds.): RSCTC 2002, LNAI 2475, pp. 77–84, 2002.External links