A rooftop solar power system, or rooftop PV system, is a
photovoltaic (PV) system that has its
electricity
Electricity is the set of physical phenomena associated with the presence and motion of matter that has a property of electric charge. Electricity is related to magnetism, both being part of the phenomenon of electromagnetism, as described ...
-generating
solar panel
A solar cell panel, solar electric panel, photo-voltaic (PV) module, PV panel or solar panel is an assembly of photovoltaic solar cells mounted in a (usually rectangular) frame, and a neatly organised collection of PV panels is called a photo ...
s mounted on the rooftop of a residential or commercial building or structure. The various components of such a system include
photovoltaic modules,
mounting systems,
cables,
solar inverter
A solar inverter or photovoltaic (PV) inverter is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic solar panel into a utility frequency alternating current (AC) that can be fed into a commercial ...
s and other electrical accessories.
Rooftop mounted systems are small compared to
utility-scale solar Utility-scale solar is large scale (sometimes defined as greater than 1 MW or sometimes 4 MWAC ) solar power either from:
A photovoltaic power station at a scale large enough to be classified as 'utility-scale'; or Concentrated solar power whereas ...
ground-mounted
photovoltaic power station
A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system (PV system) designed for the supply of merchant power. They are different from most building- ...
s with capacities in the
megawatt
The watt (symbol: W) is the unit of Power (physics), power or radiant flux in the International System of Units, International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantification (science), ...
range, hence being a form of
distributed generation
Distributed generation, also distributed energy, on-site generation (OSG), or district/decentralized energy, is electrical generation and storage performed by a variety of small, grid-connected or distribution system-connected devices referred to ...
. Most rooftop PV stations are
Grid-connected photovoltaic power system
A grid-connected photovoltaic system, or grid-connected PV system is an electricity generating solar PV power system that is connected to the utility grid. A grid-connected PV system consists of solar panels, one or several inverters, a power c ...
s. Rooftop PV systems on residential buildings typically feature a capacity of about 5–20
kilowatts
The watt (symbol: W) is the unit of power or radiant flux in the International System of Units (SI), equal to 1 joule per second or 1 kg⋅m2⋅s−3. It is used to quantify the rate of energy transfer. The watt is named after James Wa ...
(kW), while those mounted on commercial buildings often reach 100 kilowatts to 1 Megawatt (MW). Very large roofs can house industrial scale PV systems in the range of 1–10 Megawatts.
Installation
The urban environment provides a large amount of empty rooftop spaces and can inherently avoid the potential land use and environmental concerns. Estimating rooftop solar insolation is a multi-faceted process, as insolation values in rooftops are impacted by the following:
* Time of the year
*
Latitude
In geography, latitude is a coordinate that specifies the north– south position of a point on the surface of the Earth or another celestial body. Latitude is given as an angle that ranges from –90° at the south pole to 90° at the north pol ...
* Weather conditions
* Roof slope
* Roof aspect
* Shading from adjacent buildings and vegetation
There are various methods for calculating potential solar PV roof systems including the use of
Lidar
Lidar (, also LIDAR, or LiDAR; sometimes LADAR) is a method for determining ranges (variable distance) by targeting an object or a surface with a laser and measuring the time for the reflected light to return to the receiver. It can also be ...
and orthophotos. Sophisticated models can even determine shading losses over large areas for PV deployment at the municipal level.
Components of a rooftop solar array:
The following section contains the most commonly utilized components of a rooftop solar array. Though designs may vary with roof type (e.g. metal vs shingle), roof angle, and shading concerns, most arrays consist of some variation of the following components
# Solar Panels produce carbon free electricity when irradiated with sunlight. Often made of Silicon, solar panels are made of smaller solar cells which typically number 6 cells per panel. Multiple solar panels strung together make up a solar array. Solar panels are generally protected by tempered glass and secured with an aluminum frame. The front of a solar panel is very durable whereas the back of a panel is generally more vulnerable.
# Mounting clamps generally consist of aluminum brackets and stainless steel bolts that secure solar panels to one another on the roof and onto the rails. Clamps often vary in design in order to account for various roof and rail configurations.
# Racking or rails are made of metal and often lie in a parallel configuration on the roof for the panels to lie on. It is important that the rails are level enough for the panels to be evenly mounted.
# Mounts attach the rails and the entire array to the surface of the roof. These mounts are often L brackets that are bolted through flashing and into the rafters of the roof. Mounts vary in design due to the wide range of roof configurations and materials.
# Flashings are a durable metal plate that provide a water resistant seal between the mounts and roof surface. Oftentimes, caulk is used to seal the flashing to the roof and it resembles a metal roof shingle.
# DC/AC wiring for inverters connect wires between panels and into a micro inverter or string inverter.
No cables should touch the roof surface or hang from the array to avoid weathering and the deterioration of cables.
# Micro inverters are mounted to the bottom of the panel and convert DC power from the panels into AC power that can be sent into the grid. Micro inverters allow for the optimization of each panel when shading occurs and can provide specific data from individual panels.
Finances
Installation cost
PV system prices (2022)
Cost trends
In the mid-2000s, solar companies used various financing plans for customers such as leases and power purchase agreements. Customers could pay for their solar panels over a span of years, and get help with payments from credits from net metering programs. As of May 2017, installation of a rooftop solar system costs an average of $20,000. In the past, it had been more expensive.
Utility Dive wrote, "For most people, adding a solar system on top of other bills and priorities is a luxury" and "rooftop solar companies by and large cater to the wealthier portions of the American population."
Most households that get solar arrays are "upper middle-income". The average household salary for solar customers is around $100,000.
However, "a surprising number of low-income" customers appeared in a study of income and solar system purchases. "Based on the findings of the study, GTM researchers estimate that the four solar markets include more than 100,000 installations at low-income properties."
A report released in June 2018 by the Consumer Energy Alliance that analyzed U.S.
solar incentives showed that a combination of federal, state and local incentives, along with the declining net cost of installing PV systems, has caused a greater usage of rooftop solar across the nation. According to ''Daily Energy Insider'', "In 2016, residential solar PV capacity grew 20 percent over the prior year, the report said. The average installed cost of residential solar, meanwhile, dropped 21 percent to $2.84 per watt-dc in the first quarter of 2017 versus first quarter 2015."
In fact, in eight states the group studied, the total government incentives for installing a rooftop solar PV system actually exceeded the cost of doing so.
In 2019, the national average cost in the United States, after tax credits, for a 6 kW residential system was $2.99/W, with a typical range of $2.58 to $3.38.
Due to
economies of scale
In microeconomics, economies of scale are the cost advantages that enterprises obtain due to their scale of operation, and are typically measured by the amount of output produced per unit of time. A decrease in cost per unit of output enables ...
, industrial-sized ground-mounted solar systems produce power at half the cost (2c/kWh) of small roof-mounted systems (4c/kWh).
Net-metering mechanism
This is an arrangement for
grid connected solar power systems. In this mechanism, the excess solar power generated is exported to the electricity grid. The consumer gets credit for the amount of power exported. At the end of the billing cycle, the consumer is charged for the net or difference of power imported and power exported to the electricity grid. Hence the name, net-metering.
A key point to note here is that there is no sale of solar power in this mechanism. The exported kWh are only used to adjust the imported kWh prior to the bill calculation.
Feed-in tariff mechanism
In a
grid connected rooftop photovoltaic power station, the generated electricity can sometimes be sold to the servicing electric utility for use elsewhere in the grid. This arrangement provides payback for the investment of the installer. Many consumers from across the world are switching to this mechanism owing to the revenue yielded. A
public utility commission
In the United States, it is a governing body of a utility. In Canada, it is a utility, not a regulatory body.
Canada
In Canada, a public utilities commission (PUC) is a public utility owned and operated by a municipal or local government under t ...
usually sets the rate that the utility pays for this electricity, which could be at the retail rate or the lower wholesale rate, greatly affecting solar power payback and installation demand.
The FIT as it is commonly known has led to an expansion in the solar PV industry worldwide. Thousands of jobs have been created through this form of subsidy. However it can produce a bubble effect which can burst when the FIT is removed. It has also increased the ability for localised production and embedded generation reducing transmission losses through power lines.
[
]
Hybrid systems
A rooftop photovoltaic power station (either on-grid or off-grid) can be used in conjunction with other power components like diesel generator
A diesel generator (DG) (also known as a diesel Genset) is the combination of a diesel engine with an electric generator (often an alternator) to generate electrical energy. This is a specific case of engine generator. A diesel compression- ...
s, wind turbine
A wind turbine is a device that converts the kinetic energy of wind into electrical energy. Hundreds of thousands of large turbines, in installations known as wind farms, now generate over 650 gigawatts of power, with 60 GW added each year. ...
s, batteries etc. These solar hybrid power systems
Hybrid power are combinations between different technologies to produce power.
In power engineering, the term 'hybrid' describes a combined power and energy storage system.
Examples of power producers used in hybrid power are photovoltaics, ...
may be capable of providing a continuous source of power.[
]
Advantages
Installers have the right to feed solar electricity into the public grid and hence receive a reasonable premium tariff per generated kWh reflecting the benefits of solar electricity to compensate for the current extra costs of PV electricity.[
]
Disadvantages
An electrical power system containing a 10% contribution from PV stations would require a 2.5% increase in load-frequency control (LFC) capacity over a conventional system—an issue which may be countered by using synchronverter
Synchronverters or virtual synchronous generators are inverters which mimic synchronous generators (SG) to provide "synthetic inertia" for ancillary services in electric power systems. Inertia is a property of standard synchronous generators a ...
s in the DC/AC-circuit of the PV system. The break-even cost for PV power generation was in 1996 found to be relatively high for contribution levels of less than 10%. While higher proportions of PV power generation give lower break-even costs, economic and LFC considerations impose an upper limit of about 10% on PV contributions to the overall power systems.
Technical Challenges
There are many technical challenges to integrating large amounts of rooftop PV systems to the power grid.
Reverse power flow
: The electric power grid was not designed for two way power flow at the distribution level. Distribution feeders are usually designed as a radial system for one way power flow transmitted over long distances from large centralized generators to customer loads at the end of the distribution feeder. With localized and distributed solar PV generation on rooftops, reverse flow causes power to flow to the substation and transformer, causing significant challenges. This has adverse effects on protection coordination and voltage regulators.
Ramp rates
:Rapid fluctuations of generation from PV systems due to intermittent clouds cause undesirable levels of voltage variability in the distribution feeder. At high penetration of rooftop PV, this voltage variability reduces the stability of the grid due to transient imbalance in load and generation and causes voltage and frequency to exceed set limits if not countered by power controls. That is, the centralized generators cannot ramp fast enough to match the variability of the PV systems causing frequency mismatch in the nearby system. This could lead to blackouts. This is an example of how a simple localized rooftop PV system can affect the larger power grid. The issue is partially mitigated by distributing solar panels over a wide area, and by adding storage.
Operation and maintenance
:Rooftop PV solar operation and maintenance is of higher costs in comparison with ground-based facilities due to the distributed nature of rooftop facilities and harder access. In rooftop solar systems it typically takes a longer time to identify a malfunction and send a technician, due to lower availability of sufficient photovoltaic system performance monitoring tools and higher costs of human labor. As a result, rooftop solar PV systems typically suffer from lower quality of operation & maintenance and essentially lower levels of system availability and energy output.
Largest rooftop solar installations
See also
* Building-integrated photovoltaics
Building-integrated photovoltaics (BIPV) are photovoltaic materials that are used to replace conventional building materials in parts of the building envelope such as the roof, skylights, or facades. They are increasingly being incorporated in ...
* List of rooftop photovoltaic installations
A rooftop solar power system, or rooftop PV system, is a photovoltaic (PV) system that has its electricity-generating solar panels mounted on the rooftop of a residential or commercial building or structure. The various components of such a syste ...
* Maximum power point tracker
Maximum power point tracking (MPPT) or sometimes just power point tracking (PPT), is a technique used with variable power sources to maximize energy extraction as conditions vary. The technique is most commonly used with photovoltaic (PV) solar s ...
* Photovoltaic power station
A photovoltaic power station, also known as a solar park, solar farm, or solar power plant, is a large-scale grid-connected photovoltaic power system (PV system) designed for the supply of merchant power. They are different from most building- ...
* Solar cable
A photovoltaic system, also PV system or solar power system, is an electric power system designed to supply usable solar power by means of photovoltaics. It consists of an arrangement of several components, including solar panels to absorb and co ...
* Solar inverter
A solar inverter or photovoltaic (PV) inverter is a type of power inverter which converts the variable direct current (DC) output of a photovoltaic solar panel into a utility frequency alternating current (AC) that can be fed into a commercial ...
* Solar shingles
Solar shingles, also called photovoltaic shingles, are solar panels designed to look like and function as conventional roofing materials, such as asphalt shingle or slate, while also producing electricity. Solar shingles are a type of solar energ ...
* Solar tracker
References
Solar Rooftop system in India http://solarizeindia.in/product-category/grid-tie-solar-solution/
{{Photovoltaics
PhotovoltaicsAll You need to know about solar rooftop system http://solarizeindia.in/2021/06/08/all-you-need-to-know-about-solar-rooftop-system/