Design methods
In engineering in rock, three design strategies can be distinguished: analytical, empirical, and numerical. Empirical, i.e. rock mass classification, methods are extensively used for feasibility and pre-design studies, and often also for the final design.Objectives
The objectives of rock mass classifications are (after Bieniawski 1989): # Identify the most significant parameters influencing the behaviour of a rock mass. # Divide a particular rock mass formulation into groups of similar behaviour – rock mass classes of varying quality. # Provide a basis of understanding the characteristics of each rock mass class # Relate the experience of rock conditions at one site to the conditions and experience encountered at others # Derive quantitative data and guidelines for engineering design # Provide common basis for communication between engineers and geologistsBenefits
The main benefits of rock mass classifications: # Improve the quality of site investigations by calling for the minimum input data as classification parameters. # Provide quantitative information for design purposes. # Enable better engineering judgement and more effective communication on a project. # Provide a basis for understanding the characteristics of each rock massRock mass classification systems
Systems for tunneling: Quantitative
* Rock Mass Rating (RMR) * Q-system *Other systems: Qualitative
* New Austrian Tunnelling Method (NATM) * Size Strength classificationSystems for slope engineering
* Slope Mass Rating (SMR), Continuous Slope Mass Rating and Graphical Slope Mass Rating * Rock mass classification system for rock slopes *Earlier systems
*Rock load classification method :The ''Rock load classification method'' is one of the first methodologies for rock mass classification for engineering. Karl von Terzaghi developed the methodology for tunnels supported by steel sets in the 1940s. By many regarded as obsolete as ideas about rock and rock mass mechanical behavior have since further developed and the methodology is not suitable for modern tunneling methods using shotcrete and rock bolts. :Reference: also in ''Soil Mechanics Series 25'', publication 418. Harvard University, Graduate School of Engineering. *Stand-up time classification :The ''Stand-up time classification'' by Lauffer is often regarded as the origin of the '' New Austrian Tunnelling Method'' ''(NATM)''. The original system as developed by Lauffer is nowadays by many regarded as obsolete but his ideas are incorporated in modern rock mechanics science, such as the relation between the span of a tunnel and the stand-up time, and notably in the New Austrian Tunnelling Method. :Reference: * Rock Quality Designation :The '' Rock Quality Designation'' index was developed by Deere in the 1960s to classify the quality of a rock core based on the integrety of borehole cores. Nowadays the classification system itself is not very often used, but the determination of theSee also
* Slope Mass Rating * Rock mechanics * Geotechnical investigation *References
Further reading
* * * * * *{{Cite book , last1 = Singh , first1 = B. , last2 = Goel , first2 = R.K. , year = 2006 , title = Tunnelling in Weak Rocks , series = Geo-Engineering , volume = 5 , publisher = Elsevier Science , page = 512 , isbn = 978-0-08-044987-6 Rocks