Ring Of Invariants
   HOME

TheInfoList



OR:

In
algebra Algebra () is one of the broad areas of mathematics. Roughly speaking, algebra is the study of mathematical symbols and the rules for manipulating these symbols in formulas; it is a unifying thread of almost all of mathematics. Elementary a ...
, the fixed-point subring R^f of an
automorphism In mathematics, an automorphism is an isomorphism from a mathematical object to itself. It is, in some sense, a symmetry of the object, and a way of mapping the object to itself while preserving all of its structure. The set of all automorphisms ...
''f'' of a
ring Ring may refer to: * Ring (jewellery), a round band, usually made of metal, worn as ornamental jewelry * To make a sound with a bell, and the sound made by a bell :(hence) to initiate a telephone connection Arts, entertainment and media Film and ...
''R'' is the
subring In mathematics, a subring of ''R'' is a subset of a ring that is itself a ring when binary operations of addition and multiplication on ''R'' are restricted to the subset, and which shares the same multiplicative identity as ''R''. For those wh ...
of the fixed points of ''f'', that is, :R^f = \. More generally, if ''G'' is a
group A group is a number of persons or things that are located, gathered, or classed together. Groups of people * Cultural group, a group whose members share the same cultural identity * Ethnic group, a group whose members share the same ethnic iden ...
acting Acting is an activity in which a story is told by means of its enactment by an actor or actress who adopts a character—in theatre, television, film, radio, or any other medium that makes use of the mimetic mode. Acting involves a broad r ...
on ''R'', then the subring of ''R'' :R^G = \ is called the fixed subring or, more traditionally, the ring of invariants under . If ''S'' is a set of automorphisms of ''R'', the elements of ''R'' that are fixed by the elements of ''S'' form the ring of invariants under the group generated by ''S''. In particular, the fixed-point subring of an automorphism ''f'' is the ring of invariants of the
cyclic group In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bina ...
generated by ''f''. In
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
, when ''R'' is a
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
and ''G'' is a group of field automorphisms, the fixed ring is a subfield called the fixed field of the automorphism group; see
Fundamental theorem of Galois theory In mathematics, the fundamental theorem of Galois theory is a result that describes the structure of certain types of field extensions in relation to groups. It was proved by Évariste Galois in his development of Galois theory. In its most basi ...
. Along with a
module of covariants In algebra, given an algebraic group ''G'', a group representation, ''G''-module ''M'' and a ''G''-algebra ''A'', all over a field (mathematics), field ''k'', the module of covariants of type ''M'' is the A^G-module : (M \otimes_k A)^G. where -^G ...
, the ring of invariants is a central object of study in
invariant theory Invariant theory is a branch of abstract algebra dealing with actions of groups on algebraic varieties, such as vector spaces, from the point of view of their effect on functions. Classically, the theory dealt with the question of explicit descri ...
. Geometrically, the rings of invariants are the coordinate rings of (affine or projective)
GIT quotient In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme X = \operatorname A with an action by a group scheme ''G'' is the affine scheme \operatorname(A^G), the prime spectrum of the ring of i ...
s and they play fundamental roles in the constructions in
geometric invariant theory In mathematics, geometric invariant theory (or GIT) is a method for constructing quotients by Group action (mathematics), group actions in algebraic geometry, used to construct moduli spaces. It was developed by David Mumford in 1965, using ideas ...
. Example: Let R = k _1, \dots, x_n/math> be a
polynomial ring In mathematics, especially in the field of algebra, a polynomial ring or polynomial algebra is a ring (which is also a commutative algebra) formed from the set of polynomials in one or more indeterminates (traditionally also called variables) ...
in ''n'' variables. The
symmetric group In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group \m ...
S''n'' acts on ''R'' by permuting the variables. Then the ring of invariants R^G = k _1, \dots, x_n is the ring of symmetric polynomials. If a
reductive algebraic group In mathematics, a reductive group is a type of linear algebraic group over a field. One definition is that a connected linear algebraic group ''G'' over a perfect field is reductive if it has a representation with finite kernel which is a direc ...
''G'' acts on ''R'', then the fundamental theorem of invariant theory describes the generators of ''R''''G''.
Hilbert's fourteenth problem In mathematics, Hilbert's fourteenth problem, that is, number 14 of Hilbert's problems proposed in 1900, asks whether certain algebras are finitely generated. The setting is as follows: Assume that ''k'' is a field and let ''K'' be a subfield of ...
asks whether the ring of invariants is finitely generated or not (the answer is affirmative if ''G'' is a reductive algebraic group by Nagata's theorem.) The finite generation is easily seen for a
finite group Finite is the opposite of infinite. It may refer to: * Finite number (disambiguation) * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked ...
''G'' acting on a
finitely generated algebra In mathematics, a finitely generated algebra (also called an algebra of finite type) is a commutative associative algebra ''A'' over a field ''K'' where there exists a finite set of elements ''a''1,...,''a'n'' of ''A'' such that every element of ...
''R'': since ''R'' is
integral In mathematics Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented i ...
over ''R''''G'',Given ''r'' in ''R'', the polynomial \prod_ (t - g \cdot r) is a monic polynomial over ''R''''G'' and has ''r'' as one of its roots. the
Artin–Tate lemma In algebra, the Artin–Tate lemma, named after Emil Artin and John Tate, states: :Let ''A'' be a commutative Noetherian ring and B \sub C commutative algebras over ''A''. If ''C'' is of finite type over ''A'' and if ''C'' is finite over ''B'', t ...
implies ''R''''G'' is a finitely generated algebra. The answer is negative for some
unipotent group In mathematics, a unipotent element ''r'' of a ring ''R'' is one such that ''r'' − 1 is a nilpotent element; in other words, (''r'' − 1)''n'' is zero for some ''n''. In particular, a square matrix ''M'' is a unipote ...
s. Let ''G'' be a finite group. Let ''S'' be the symmetric algebra of a finite-dimensional ''G''-module. Then ''G'' is a reflection group if and only if S is a
free module In mathematics, a free module is a module that has a basis – that is, a generating set consisting of linearly independent elements. Every vector space is a free module, but, if the ring of the coefficients is not a division ring (not a field in t ...
(of finite
rank Rank is the relative position, value, worth, complexity, power, importance, authority, level, etc. of a person or object within a ranking, such as: Level or position in a hierarchical organization * Academic rank * Diplomatic rank * Hierarchy * H ...
) over ''S''''G'' (Chevalley's theorem). In
differential geometry Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multili ...
, if ''G'' is a
Lie group In mathematics, a Lie group (pronounced ) is a group that is also a differentiable manifold. A manifold is a space that locally resembles Euclidean space, whereas groups define the abstract concept of a binary operation along with the additio ...
and \mathfrak = \operatorname(G) its
Lie algebra In mathematics, a Lie algebra (pronounced ) is a vector space \mathfrak g together with an Binary operation, operation called the Lie bracket, an Alternating multilinear map, alternating bilinear map \mathfrak g \times \mathfrak g \rightarrow ...
, then each principal ''G''-bundle on a
manifold In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. More precisely, an n-dimensional manifold, or ''n-manifold'' for short, is a topological space with the property that each point has a n ...
''M'' determines a graded
algebra homomorphism In mathematics, an algebra homomorphism is a homomorphism between two associative algebras. More precisely, if and are algebras over a field (or commutative ring) , it is a function F\colon A\to B such that for all in and in , * F(kx) = kF(x) ...
(called the
Chern–Weil homomorphism In mathematics, the Chern–Weil homomorphism is a basic construction in Chern–Weil theory that computes topological invariants of vector bundles and principal bundles on a smooth manifold ''M'' in terms of connections and curvature representing ...
) :\mathbb
mathfrak Fraktur () is a calligraphic hand of the Latin alphabet and any of several blackletter typefaces derived from this hand. The blackletter lines are broken up; that is, their forms contain many angles when compared to the curves of the Antiqu ...
G \to \operatorname^(M; \mathbb) where \mathbb
mathfrak Fraktur () is a calligraphic hand of the Latin alphabet and any of several blackletter typefaces derived from this hand. The blackletter lines are broken up; that is, their forms contain many angles when compared to the curves of the Antiqu ...
/math> is the
ring of polynomial functions In mathematics, the ring of polynomial functions on a vector space ''V'' over a field ''k'' gives a coordinate-free analog of a polynomial ring. It is denoted by ''k'' 'V'' If ''V'' is finite dimensional and is viewed as an algebraic variety, then ' ...
on \mathfrak and ''G'' acts on \mathbb
mathfrak Fraktur () is a calligraphic hand of the Latin alphabet and any of several blackletter typefaces derived from this hand. The blackletter lines are broken up; that is, their forms contain many angles when compared to the curves of the Antiqu ...
/math> by
adjoint representation In mathematics, the adjoint representation (or adjoint action) of a Lie group ''G'' is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if ''G'' is GL(n ...
.


See also

*
Character variety In the mathematics of moduli theory, given an algebraic, reductive, Lie group G and a finitely generated group \pi, the G-''character variety of'' \pi is a space of equivalence classes of group homomorphisms from \pi to G: :\mathfrak(\pi,G)=\ ...


Notes


References

* * {{Citation , last=Springer , first=Tonny A. , title=Invariant theory , series=Lecture Notes in Mathematics , volume=585 , publisher=Springer , year=1977 Ring theory