In
mathematics
Mathematics is an area of knowledge that includes the topics of numbers, formulas and related structures, shapes and the spaces in which they are contained, and quantities and their changes. These topics are represented in modern mathematics ...
, the Riemann–Siegel theta function is defined in terms of the
gamma function
In mathematics, the gamma function (represented by , the capital letter gamma from the Greek alphabet) is one commonly used extension of the factorial function to complex numbers. The gamma function is defined for all complex numbers except ...
as
:
for real values of ''t''. Here the
argument
An argument is a statement or group of statements called premises intended to determine the degree of truth or acceptability of another statement called conclusion. Arguments can be studied from three main perspectives: the logical, the dialectic ...
is chosen in such a way that a continuous function is obtained and
holds, i.e., in the same way that the
principal branch In mathematics, a principal branch is a function which selects one branch ("slice") of a multi-valued function. Most often, this applies to functions defined on the complex plane.
Examples
Trigonometric inverses
Principal branches are used ...
of the
log-gamma function is defined.
It has an
asymptotic expansion In mathematics, an asymptotic expansion, asymptotic series or Poincaré expansion (after Henri Poincaré) is a formal series of functions which has the property that truncating the series after a finite number of terms provides an approximation to ...
:
which is not convergent, but whose first few terms give a good approximation for
. Its Taylor-series at 0 which converges for
is
:
where
denotes the
polygamma function
In mathematics, the polygamma function of order is a meromorphic function on the complex numbers \mathbb defined as the th derivative of the logarithm of the gamma function:
:\psi^(z) := \frac \psi(z) = \frac \ln\Gamma(z).
Thus
:\psi^(z) = ...
of order
.
The Riemann–Siegel theta function is of interest in studying the
Riemann zeta function
The Riemann zeta function or Euler–Riemann zeta function, denoted by the Greek letter (zeta), is a mathematical function of a complex variable defined as \zeta(s) = \sum_^\infty \frac = \frac + \frac + \frac + \cdots for \operatorname(s) > ...
, since it can rotate the Riemann zeta function such that it becomes the totally real valued
Z function
In mathematics, the Z function is a function (mathematics), function used for studying the Riemann zeta function along the Riemann hypothesis, critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the R ...
on the
critical line
Critical Line was a contemporary art
Contemporary art is the art of today, produced in the second half of the 20th century or in the 21st century. Contemporary artists work in a globally influenced, culturally diverse, and technologically ad ...
.
Curve discussion
The Riemann–Siegel theta function is an odd
real analytic function
In mathematics, an analytic function is a function that is locally given by a convergent power series. There exist both real analytic functions and complex analytic functions. Functions of each type are infinitely differentiable, but complex ...
for real values of
with three roots at
and
. It is an increasing function for
, and has local extrema at
, with value
. It has a single inflection point at
with
, which is the minimum of its derivative.
Theta as a function of a complex variable
We have an infinite series expression for the
log-gamma function
:
where ''γ'' is
Euler's constant
Euler's constant (sometimes also called the Euler–Mascheroni constant) is a mathematical constant usually denoted by the lowercase Greek letter gamma ().
It is defined as the limiting difference between the harmonic series and the natural ...
. Substituting
for ''z'' and taking the imaginary part termwise gives the following series for ''θ''(''t'')
:
For values with imaginary part between −1 and 1, the arctangent function is
holomorphic
In mathematics, a holomorphic function is a complex-valued function of one or more complex variables that is complex differentiable in a neighbourhood of each point in a domain in complex coordinate space . The existence of a complex derivativ ...
, and it is easily seen that the series converges uniformly on compact sets in the region with imaginary part between −1/2 and 1/2, leading to a holomorphic function on this domain. It follows that the
Z function
In mathematics, the Z function is a function (mathematics), function used for studying the Riemann zeta function along the Riemann hypothesis, critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the R ...
is also holomorphic in this region, which is the critical strip.
We may use the identities
:
to obtain the closed-form expression
:
which extends our original definition to a holomorphic function of ''t''. Since the principal branch of log Γ has a single branch cut along the negative real axis, ''θ''(''t'') in this definition inherits branch cuts along the imaginary axis above ''i''/2 and below −''i''/2.
Gram points
The Riemann zeta function on the critical line can be written
:
:
If
is a
real number
In mathematics, a real number is a number that can be used to measure a ''continuous'' one-dimensional quantity such as a distance, duration or temperature. Here, ''continuous'' means that values can have arbitrarily small variations. Every real ...
, then the
Z function
In mathematics, the Z function is a function (mathematics), function used for studying the Riemann zeta function along the Riemann hypothesis, critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the R ...
returns ''real'' values.
Hence the zeta function on the critical line will be ''real'' when
. Positive real values of
where this occurs are called Gram points, after
J. P. Gram, and can of course also be described as the points where
is an integer.
A Gram point is a solution
of
:
These solutions are approximated by the sequence:
:
where
is the
Lambert W function
In mathematics, the Lambert function, also called the omega function or product logarithm, is a multivalued function, namely the Branch point, branches of the converse relation of the function , where is any complex number and is the expone ...
.
Here are the smallest non negative Gram points
The choice of the index ''n'' is a bit crude. It is historically chosen in such a way that the index is 0 at the first value which is larger than the smallest positive zero (at imaginary part 14.13472515 ...) of the Riemann zeta function on the critical line. Notice, this
-function oscillates for absolute-small real arguments and therefore is not uniquely invertible in the interval
ˆ’24,24 Thus the
odd
Odd means unpaired, occasional, strange or unusual, or a person who is viewed as eccentric.
Odd may also refer to:
Acronym
* ODD (Text Encoding Initiative) ("One Document Does it all"), an abstracted literate-programming format for describing X ...
theta-function has its symmetric Gram point with value 0 at index −3.
Gram points are useful when computing the zeros of
. At a Gram point
:
and if this is ''positive'' at ''two'' successive Gram points,
must have a zero in the interval.
According to Gram’s law, the
real part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form a ...
is ''usually'' positive while the
imaginary part
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the form ...
alternates with the Gram points, between ''positive'' and ''negative'' values at somewhat regular intervals.
:
The number of roots,
, in the strip from 0 to ''T'', can be found by
:
where
is an error term which grows asymptotically like
.
Only if
would obey Gram’s law, then finding the number of roots in the strip simply becomes
:
Today we know, that in the long run, Gram's law fails for about 1/4 of all Gram-intervals to contain exactly 1 zero of the Riemann zeta-function. Gram was afraid that it may fail for larger indices (the first miss is at index 126 before the 127th zero) and thus claimed this only for not too high indices. Later Hutchinson coined the phrase ''Gram's law'' for the (false) statement that all zeroes on the critical line would be separated by Gram points.
See also
*
Z function
In mathematics, the Z function is a function (mathematics), function used for studying the Riemann zeta function along the Riemann hypothesis, critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the R ...
References
*
* Gabcke, W. (1979), ''Neue Herleitung und explizierte Restabschätzung der Riemann-Siegel-Formel''. Thesis,
University of Göttingen
The University of Göttingen, officially the Georg August University of Göttingen, (german: Georg-August-Universität Göttingen, known informally as Georgia Augusta) is a public research university in the city of Göttingen, Germany. Founded ...
Revised version (eDiss Göttingen 2015)*
External links
*
Wolfram Research – Riemann-Siegel Theta function(includes function plotting and evaluation)
{{DEFAULTSORT:Riemann-Siegel theta function
Zeta and L-functions
Bernhard Riemann