HOME

TheInfoList



OR:

Retinal waves are spontaneous bursts of
action potentials An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, c ...
that propagate in a wave-like fashion across the developing
retina The retina (from la, rete "net") is the innermost, light-sensitive layer of tissue of the eye of most vertebrates and some molluscs. The optics of the eye create a focused two-dimensional image of the visual world on the retina, which then ...
. These waves occur before rod and
cone A cone is a three-dimensional geometric shape that tapers smoothly from a flat base (frequently, though not necessarily, circular) to a point called the apex or vertex. A cone is formed by a set of line segments, half-lines, or lines con ...
maturation and before
vision Vision, Visions, or The Vision may refer to: Perception Optical perception * Visual perception, the sense of sight * Visual system, the physical mechanism of eyesight * Computer vision, a field dealing with how computers can be made to gain un ...
can occur. The signals from retinal waves drive the activity in the dorsal
lateral geniculate nucleus In neuroanatomy, the lateral geniculate nucleus (LGN; also called the lateral geniculate body or lateral geniculate complex) is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, ventral projec ...
(dLGN) and the primary
visual cortex The visual cortex of the brain is the area of the cerebral cortex that processes visual information. It is located in the occipital lobe. Sensory input originating from the eyes travels through the lateral geniculate nucleus in the thalamus and ...
. The waves are thought to propagate across neighboring cells in random directions determined by periods of refractoriness that follow the initial depolarization. Retinal waves are thought to have properties that define early connectivity of circuits and
synapses In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
between cells in the retina. There is still much debate about the exact role of retinal waves. Some contend that the waves are instructional in the formation of retinogeniculate pathways, while others argue that the activity is necessary but not instructional in the formation of retinogeniculate pathways.


Discovery

One of the first scientists to theorize the existence of spontaneous cascades of electrical activity during retinal development was computational neurobiologist David J. Willshaw. He proposed that adjacent cells generate electrical activity in a wave-like formation through layers of interconnected pre-synaptic and postsynaptic cells. Activity propagating through a close span of pre- and postsynaptic cells is thought to result in strong electrical activity in comparison to pre- and postsynaptic cells that are farther apart, which results in weaker activity. Willshaw thought this difference in the firing strength and the location of cells was responsible for determining the activities' boundaries. The lateral movement of firing from neighboring cell to neighboring cell, starting in one random area of cells and moving throughout both the pre- and postsynaptic layers, is thought to be responsible for the formation of the retinotopic map. To simulate the cascade of electrical activity, Willshaw wrote a computer program to demonstrate the movement of electrical activity between pre- and postsynaptic cell layers. What Willshaw called "spontaneous patterned electrical activity" is today referred to as "retinal waves." From this purely theoretical concept, Italian scientists Lucia Galli and Lamberto Maffei used animal models to observe electrical activity in ganglion cells of the retina. Before Galli and Maffei, retinal ganglion cell activity had never been recorded during prenatal development. To study ganglion activity, Galli and Maffei used premature rat retinas, between embryonic days 17 and 21, to record electrical activity. Several isolated, single cells were used for this study. The recordings showed cell activity was catalyzed from ganglion cells. Galli and Maffei speculated that the electrical activity seen in the
retinal ganglion cells A retinal ganglion cell (RGC) is a type of neuron located near the inner surface (the ganglion cell layer) of the retina of the eye. It receives visual information from photoreceptors via two intermediate neuron types: bipolar cells and retina ...
may be responsible for the formation of retinal synaptic connections and for the projections of
retinal ganglion cells A retinal ganglion cell (RGC) is a type of neuron located near the inner surface (the ganglion cell layer) of the retina of the eye. It receives visual information from photoreceptors via two intermediate neuron types: bipolar cells and retina ...
to the
superior colliculus In neuroanatomy, the superior colliculus () is a structure lying on the roof of the mammalian midbrain. In non-mammalian vertebrates, the homologous structure is known as the optic tectum, or optic lobe. The adjective form ''tectal'' is commonly ...
and
lateral geniculate nucleus In neuroanatomy, the lateral geniculate nucleus (LGN; also called the lateral geniculate body or lateral geniculate complex) is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, ventral projec ...
(LGN). As the idea of retinal waves became established, neurobiologist
Carla Shatz Carla J. Shatz (born 1947) is an American neurobiologist and an elected member of the American Academy of Arts and Sciences, the American Philosophical Society, the National Academy of Sciences, and the National Academy of Medicine. She was th ...
used
calcium imaging Calcium imaging is a microscopy technique to optically measure the calcium (Ca2+) status of an isolated cell, tissue or medium. Calcium imaging takes advantage of calcium indicators, fluorescent molecules that respond to the binding of Ca2+ ions b ...
and microelectrode recording to visualize the movement of
action potentials An action potential occurs when the membrane potential of a specific cell location rapidly rises and falls. This depolarization then causes adjacent locations to similarly depolarize. Action potentials occur in several types of animal cells, c ...
in a wave-like formation. For more information on calcium imaging and microelectrode recording, see section below. The
calcium imaging Calcium imaging is a microscopy technique to optically measure the calcium (Ca2+) status of an isolated cell, tissue or medium. Calcium imaging takes advantage of calcium indicators, fluorescent molecules that respond to the binding of Ca2+ ions b ...
showed ganglion cells initiating the formation of retinal waves, along with adjacent
amacrine cells Amacrine cells are interneurons in the retina. They are named from the Greek roots ''a–'' ("non"), ''makr–'' ("long") and ''in–'' ("fiber"), because of their short neuronal processes. Amacrine cells are inhibitory neurons, and they proje ...
, which take part in the movement of the electrical activity. Microelectrode recordings were also thought to show
LGN In neuroanatomy, the lateral geniculate nucleus (LGN; also called the lateral geniculate body or lateral geniculate complex) is a structure in the thalamus and a key component of the mammalian visual pathway. It is a small, ovoid, Anatomical term ...
neurons being driven by the wave-like formation of electrical activity across neighboring retinal ganglion cells. From these results, it was suggested that the waves of electrical activity were responsible for driving the pattern of spatiotemporal activity and also playing a role in the formation of the
visual system The visual system comprises the sensory organ (the eye) and parts of the central nervous system (the retina containing photoreceptor cells, the optic nerve, the optic tract and the visual cortex) which gives organisms the sense of sight (the a ...
during prenatal development. Rachel Wong is another researcher involved in the study of retinal waves. Wong speculated that electrical activity, within the retina, is involved in the organization of retinal projections during prenatal development. More specifically, the electrical activity may be responsible for the segregation and organization of the dLGN. Wong also speculated that specific parts of the visual system, such as the
ocular dominance columns Ocular dominance columns are stripes of neurons in the visual cortex of certain mammals (including humans) that respond preferentially to input from one eye or the other. The columns span multiple cortical layers, and are laid out in a striped patt ...
, require some form of electrical activity in order to develop completely. She also believed being able to figure out the signals encoded by retinal waves, may allow scientists to better understand how retinal waves play a role in retinal development. Some of the most recent research being conducted is attempting to better understand the encoded signals of retinal waves during development. According to research conducted by Evelyne Sernagor, it is thought that retinal waves are not just necessary for their spontaneous electrical activity but are also responsible for encoding information to be used in the formation of spatiotemporal patterns allowing retinal pathways to become more refined. Using turtles to test this concept, Sernagor used calcium imaging to look at the change in retinal waves during various stages of retinal development. From the study, at the very first stages of development, retinal waves fire quickly and repeatedly, causing what is thought to be a large wave of action potentials across the retina. However, as the turtle nears completion of development, the retinal waves gradually stop spreading and instead become immobile clumps of retinal ganglion cells. This is thought to be a result of GABA changing from excitatory to inhibitory during continual retinal development. Whether the change in retinal wave formation during development is unique to turtles, is still largely unknown.


Observation of waves in other systems

Spontaneous generation and propagation of waves is seen elsewhere in developing circuits. Similar synchronized spontaneous activity early in development has been seen in neurons of the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, a ...
,
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the spi ...
, and auditory nuclei. Patterned activity shaping neuronal connections and control of synaptic efficiency in multiple systems including the retina are important for understanding interaction between
presynaptic In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
and
postsynaptic Chemical synapses are biological junctions through which neurons' signals can be sent to each other and to non-neuronal cells such as those in muscles or glands. Chemical synapses allow neurons to form circuits within the central nervous sys ...
cells that create precise connections essential to the function of the nervous system.


Development

During development, communication via synapse is important between
amacrine cells Amacrine cells are interneurons in the retina. They are named from the Greek roots ''a–'' ("non"), ''makr–'' ("long") and ''in–'' ("fiber"), because of their short neuronal processes. Amacrine cells are inhibitory neurons, and they proje ...
and other retinal interneurons as well as
ganglion cell {{stack, A ganglion cell is a cell found in a ganglion. Examples of ganglion cells include: * Retinal ganglion cell (RGC) found in the ganglion cell layer of the retina * Cells that reside in the adrenal medulla, where they are involved in the s ...
s, which act as a substrate for retinal waves. There are three stages of development that characterize retinal wave activity in mammals. Before birth, the waves are mediated by non-synaptic currents, waves during the period from birth until 10 days after birth are mediated by the neurotransmitter
acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (including humans) as a neurotransmitter. Its name is derived from its chemical structure: it is an ester of acetic acid and choline. Part ...
acting on
nicotinic acetylcholine receptors Nicotinic acetylcholine receptors, or nAChRs, are receptor polypeptides that respond to the neurotransmitter acetylcholine. Nicotinic receptors also respond to drugs such as the agonist nicotine. They are found in the central and peripheral n ...
, and waves during the third period, from 10 days after birth to 2 weeks, are mediated by
ionotropic glutamate receptors Ionotropic glutamate receptors (iGluRs) are ligand-gated ion channels that are activated by the neurotransmitter glutamate. They mediate the majority of excitatory synaptic transmission throughout the central nervous system and are key players ...
. Chemical synapses during the cholinergic wave period involve the
starburst amacrine cell Starburst amacrine cells are a type of amacrine cells found in the retina. These interneurons are notable for co-releasing acetylcholine Acetylcholine (ACh) is an organic chemical that functions in the brain and body of many types of animals (i ...
s (SACs) releasing acetylcholine onto other SACs, which then propagate waves. During this period, cholinergic wave production exceeds wave production via
gap junctions Gap junctions are specialized intercellular connections between a multitude of animal cell-types. They directly connect the cytoplasm of two cells, which allows various molecules, ions and electrical impulses to directly pass through a regulate ...
, of which the signals are quite reduced. This signaling happens before bipolar cells form connections in the
inner plexiform layer The inner plexiform layer is an area of the retina that is made up of a dense reticulum of fibrils formed by interlaced dendrites of retinal ganglion cells and cells of the inner nuclear layer The inner nuclear layer or layer of inner granules, o ...
. SACs are thought to be the source of retinal waves because spontaneous depolarizations have been observed without synaptic excitation. Cholinergic wave activity eventually dies out, and the release of
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
in
bipolar cells A bipolar neuron, or bipolar cell, is a type of neuron that has two extensions (one axon and one dendrite). Many bipolar cells are specialized sensory neurons for the transmission of sense. As such, they are part of the sensory pathways for smell ...
generates waves. Bipolar cells differentiate later than amacrine and ganglion cells, which could be the cause for this change in wave behavior. The change from cholinergic mediation to glutamatergic mediation occurs when bipolar cells make their first synaptic connections with ganglion cells. Glutamate, the neurotransmitter contained in bipolar cells, generates spontaneous activity in ganglion cells. Waves are still present after bipolar cells establish synaptic connection with amacrine and ganglion cells. Additional activity involved in retinal waves includes the following. In certain species, GABA appears to play a role in the frequency and duration of the bursts in ganglion cells. The interactions in cells vary in different test subjects and at different maturity levels, especially the complex interactions mediated by amacrine cells. Activity propagated via gap junctions has not been observed in all test subjects; for example, research has shown that ferret retina ganglion cells are not coupled. Other studies have shown that extracellular excitatory agents such as
potassium Potassium is the chemical element with the symbol K (from Neo-Latin ''kalium'') and atomic number19. Potassium is a silvery-white metal that is soft enough to be cut with a knife with little force. Potassium metal reacts rapidly with atmosphe ...
could be instrumental in wave propagation. Research suggests that synaptic networks of amacrine and ganglion cells are necessary for the production of waves. Broadly put, waves are produced and continue over a relatively long developmental period, during which new cellular components of the retina and synapses are added. Variation in the mechanisms of retinal waves account for diversity in the connections between cells and the maturation of processes in the retina.


Activity pattern of waves

Waves are generated at random but limited spatially due to a refractory period in cells after bursts of action potentials have been produced. After a wave has been propagated in one place, it cannot be propagated in the same place again. Wave-induced refractory areas last about 40 to 60 seconds. Research suggests that every region of the retina has an equal probability of generating and propagating a wave. The refractory period also determines the velocity (distance between wave fronts per unit of time) and periodicity (average time interval between wave-induced calcium transients or depolarizations recorded in a particular neuron in the ganglion cell layer). The density of refractory cells corresponds to how fast retinal waves propagate; for instance, if there is a low number or density of refractory cells, the velocity of propagation will be high.


Experimental procedures


Visualization of waves

Two primary methods of visualizing retinal waves are the use of
calcium imaging Calcium imaging is a microscopy technique to optically measure the calcium (Ca2+) status of an isolated cell, tissue or medium. Calcium imaging takes advantage of calcium indicators, fluorescent molecules that respond to the binding of Ca2+ ions b ...
and
multielectrode array Microelectrode arrays (MEAs) (also referred to as multielectrode arrays) are devices that contain multiple (tens to thousands) microelectrodes through which neural signals are obtained or delivered, essentially serving as neural interfaces that co ...
. Calcium imaging allows analysis of wave pattern over a large area of the retina (more than with multielectrode recording). Imaging as such has allowed researchers to investigate spatiotemporal properties or waves as well as wave mechanism and function in development.


Disrupting waves

There are three main techniques currently used to disrupt retinal waves: intraocular injection of pharmacological substances that alter wave patterns, use of immunotoxins that eliminate certain classes of amacrine cells, or use of knockout mouse lines that have altered spontaneous firing patterns. There are several pharmacological agents that can be used to disrupt retinal activity.
Tetrodotoxin Tetrodotoxin (TTX) is a potent neurotoxin. Its name derives from Tetraodontiformes, an order that includes pufferfish, porcupinefish, ocean sunfish, and triggerfish; several of these species carry the toxin. Although tetrodotoxin was discovered ...
(TTX) can be injected near the optic tract to block incoming retinal activity in addition to the outgoing activity of lateral geniculate neurons. Intraocular injections of
epibatidine Epibatidine is a chlorinated alkaloid that is secreted by the Ecuadoran frog '' Epipedobates anthonyi'' and poison dart frogs from the Ameerega genus. It was discovered by John W. Daly in 1974, but its structure was not fully elucidated until ...
, a cholinergic agonist, can be used to block spontaneous firing in half of all retinal ganglion cells and cause uncorrelated firing in the remaining half. Effects of the pharmacological agents on retinal ganglion cell activity are observed using either MEA or calcium imaging. Immunotoxins can be used to target starburst amacrine cells. Starburst amacrine cells are retinal interneurons responsible for cholinergic retinal waves. The third method is to use knockout mice with altered spontaneous firing patterns. The most common line of mouse for this method is the neuronal nicotinic acetylcholine receptor beta-2 subunit knockout (β2-nAChR-KO). β2-nAChR-KO mice have been observed to have reduced eye-specific retinotopic refinement similar to epitbatidine injection as well as no correlated waves, as observed with calcium imaging and MEA recording.


Controversial role in neuronal development

There is currently still much controversy about whether retinal waves play an 'instructive' or a 'permissive' role in the formation of eye-specific projections in the retinogeniculate pathway. Injections of pharmacological agents prevents the formation of eye-specific retinogeniculate inputs, which indicates that retinal waves play some role in the formation. β2-nAChR-KO mice have been found to have altered patterns of spontaneous firing. It is important to note that while experiments done in knock-out lines to date have helped to explain some things about retinal waves, only experiments done ''in vivo'' at normal body temperature and in a normal chemical environment can truly determine what the true pattern of firing is in the knock-out animals.


Instructive argument

Retinal wave activity has been found to coincide with the period in which eye-specific retinogeniculate projections are formed. This temporal overlap would be necessary for a causal relationship. TTX injections in fetal cats prevented the formation of eye-specific retinogeniculate projections, which indicates that neuronal activity is necessary for the formation of eye-specific layers. After treatment with epibatidine, the lack of correlated firing in the remaining half of retinal ganglion cells despite the robust firing as well as the lack of eye-specific layer formation can be indicated as proof that the waves play an instructional role. Calcium imaging observation following immunotoxin use showed that some correlated firing still remained where coupled voltage clamp recording showed significant reduction in correlated firing. The remaining correlated firing could explain the formation of eye-specific retinogeniculate projections that was found. Using calcium imaging and MEA recording these cells have shown to have no correlated firing. Instead, reduced firing rates have been observed, and depolarization in one cell seemed to inhibit surrounding cells. The altered firing pattern of the β2-nAChR-KO mice is also controversial as there has been some evidence that correlated firing still occurs in the knock-out mice, as detailed in the next section.


Permissive argument

Retinal waves have been found while eye-specific retinogeniculate pathways are formed; however, it is important to note that in all species studied to date retinal waves begin prior to and continue after these eye-specific pathways are formed. It also is noted that some species in which retinal waves have been documented to have projections that are crossed. This suggests that retinal waves can be present and not play an instructive role in eye-specific inputs. There are several issues to be considered when looking at data from use of pharmacological substance to block retinal activity. First, the long-term effects of treatment with TTX are unknown, as it is not yet possible to monitor the retinal activity for a long duration in an intact animal. The finding that long-term injection of TTX did not inhibit and instead merely delayed eye-specific layer formation could be explained then by the reduced effects of TTX on retinal activity at a longer duration. This supports the argument that blocking all retinal activity prevents eye-specific projection formation remains to be determined. Furthermore, since immunotoxin treatment to kill starburst amacrine cells shows no difference in the formation of eye-specific retinogeniculate projections while treatment with epibatidine does, it could suggest that some sort of retinal activity is essential for the eye-specific layer formation, but not retinal waves. One study showed that β2-nAChR-KO mice did still have robust retinal wave activity, unlike previously reported; however, they found that the retinal waves were propagated using gap junctions in the knock-out line, instead of cholinergic transmission wild-type mice display.


References


Further reading

* *{{cite journal , doi=10.1146/annurev.neuro.22.1.29, pmid=10202531, title=Retinal Waves and Visual System Development, journal=Annual Review of Neuroscience, volume=22, pages=29–47, year=1999, last1=Wong, first1=Rachel O. L. Animal developmental biology Human eye anatomy Visual system