In medicine, a
stent
In medicine, a stent is a metal or plastic tube inserted into the lumen of an anatomic vessel or duct to keep the passageway open, and stenting is the placement of a stent. A wide variety of stents are used for different purposes, from expandab ...
is any device which is inserted into a
blood vessel
The blood vessels are the components of the circulatory system that transport blood throughout the human body. These vessels transport blood cells, nutrients, and oxygen to the tissues of the body. They also take waste and carbon dioxide away ...
or other internal duct to expand it to prevent or alleviate a blockage. Traditionally, such devices are fabricated from metal mesh and remain in the body permanently or until removed through further surgical intervention. A bioresorbable stent (also called bioresorbable scaffold, biodegradable stent or naturally-dissolving stent) serves the same purpose, but is manufactured from a material that may dissolve or be absorbed in the body.
Background
The use of metal
drug-eluting stent
A drug-eluting stent (DES) is a peripheral or coronary stent (a scaffold) placed into narrowed, diseased peripheral or coronary arteries that slowly release a drug to block cell proliferation. This prevents fibrosis that, together with clots ...
s presents some potential drawbacks. These include a predisposition to late stent
thrombosis
Thrombosis (from Ancient Greek "clotting") is the formation of a blood clot inside a blood vessel, obstructing the flow of blood through the circulatory system. When a blood vessel (a vein or an artery) is injured, the body uses platelets (thro ...
, prevention of late vessel adaptive or expansive remodeling, hindrance of surgical revascularization, and impairment of imaging with multislice
CT.
To overcome some of these potential drawbacks, several companies are pursuing the development of bioresorbable scaffolds or bioabsorbable stents. Like metal stents, placement of a bioresorbable stent will restore blood flow and support the vessel through the healing process. However, in the case of a bioresorbable stent, the stent will gradually resorb and be benignly cleared from the body, enabling a natural reconstruction of the arterial wall and restoration of vascular function.
Studies have shown that the most critical period of vessel healing is largely complete by approximately three to nine months.
Therefore, the goal of a bioresorbable or "temporary" stent is to fully support the vessel during this critical period, and then resorb from the body when it is no longer needed.
Base materials
Bioabsorbable scaffolds, or naturally dissolving stents, that have been investigated include base materials that are either metals or polymers. While polymer-based scaffolds had a strong presence at first, they have meanwhile lost some appeal due to safety concerns and focus is now shifted more towards metallic magnesium-based scaffolds.
Metal based
Metal stent candidates are
iron
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
,
magnesium
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
,
zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
and their alloys.
Iron
Iron () is a chemical element with symbol Fe (from la, ferrum) and atomic number 26. It is a metal that belongs to the first transition series and group 8 of the periodic table. It is, by mass, the most common element on Earth, right in f ...
stents were shown using an ''in vivo'' evaluation method based on the murine abdominal aorta to generate an iron oxide-filled cavity in the vascular wall. This behavior significantly narrowed the lumen and generated a potential site for rupture of the endothelium after stent degradation.
Magnesium
Magnesium is a chemical element with the symbol Mg and atomic number 12. It is a shiny gray metal having a low density, low melting point and high chemical reactivity. Like the other alkaline earth metals (group 2 of the periodic ta ...
-based scaffolds have been approved for use in several countries around the world. The only commercially available magnesium-based scaffold consists of a magnesium alloy, approximately 95% of which resorbs within one year of implantation. Thousands of commercially available magnesium-based scaffolds have been implanted. Promising clinical results suggest that magnesium-based scaffolds seem to be a viable option in delivering against the drawbacks of permanent stents. While degrading harmlessly, it has been shown to possess a functional degradation time of about 30 days ''in vivo''. This is much short of the three-to-six month window desired for bioabsorbable stents. Thus, much attention has been given to drastically reducing the rate of magnesium corrosion by alloying, coating, etc. Many novel methods have surfaced to minimize the penetration rate and hydrogen evolution rate (or, in layman's terms, the
corrosion
Corrosion is a natural process that converts a refined metal into a more chemically stable oxide. It is the gradual deterioration of materials (usually a metal) by chemical or electrochemical reaction with their environment. Corrosion engine ...
rate). One of the most successful has involved the creation of
bioabsorbable metallic glass Bioresorbable (or bioabsorbable) metallic glass is a type of amorphous metal, which is based on the ''Mg-Zn-Ca ternary system''. Containing only elements which already exist inside the human body, namely Mg, Zn and Ca, these amorphous alloys are ...
es via rapid solidification. Other, alternative solutions have included the development of magnesium–
rare-earth
The rare-earth elements (REE), also called the rare-earth metals or (in context) rare-earth oxides or sometimes the lanthanides (yttrium and scandium are usually included as rare earths), are a set of 17 nearly-indistinguishable lustrous silve ...
(Mg-RE) alloys, which benefit from the low
cytotoxicity
Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (''Bitis arietans'') or brown recluse spider (''Loxosceles reclusa'').
Cell physiology
Treating cells ...
of RE elements.
Coatings
A coating is a covering that is applied to the surface of an object, usually referred to as the substrate. The purpose of applying the coating may be decorative, functional, or both. Coatings may be applied as liquids, gases or solids e.g. Powder ...
and sophisticated materials processing routes are currently being developed to further decrease the corrosion rate. However a number of issues remain limiting the further development of Mg biomaterials in general.
Recently,
zinc
Zinc is a chemical element with the symbol Zn and atomic number 30. Zinc is a slightly brittle metal at room temperature and has a shiny-greyish appearance when oxidation is removed. It is the first element in group 12 (IIB) of the periodi ...
was shown to exhibit outstanding physiological corrosion behavior, meeting a benchmark penetration rate of 20 micrometers per year. This contribution also asserts that zinc alloys generally meet or exceed mechanical behavior benchmarks (i.e. ductility and tensile strength). While promising, this material is relatively new, so further work is required to prove that zinc is a feasible base material for a stent.
Polymer-based
Polymer-based stents have been approved for use in some countries around the world. These are based on poly(L-lactide) (
PLLA), chosen because it is able to maintain a radially strong scaffold that breaks down over time into lactic acid, a naturally occurring molecule that the body can use for metabolism. Other polymers in development include tyrosine poly carbonate and salicylic acid.
An example of a naturally dissolving stent is the 'Absorb' stent 'produced by
Abbott that has several design components and features: base scaffold: a poly(L-lactide) polymer similar to that in dissolvable stitches is shaped into a tube made up of zigzag hoops linked together by bridges; drug-eluting layer': a mixture of poly-D, L-lactide (PDLLA) and everolimus; 'markers': a pair of radio-opaque platinum markers at the ends that allow the device to be visualized during angiography; 'delivery system': a balloon delivery system.
Recently however, Polymer-based scaffolds, in particular Poly-L-Lactide Acid (PLLA) scaffolds, have raised serious concerns on the scaffold performance particularly in terms of safety which led to the commercial discontinuation of the main representative Absorb.
Clinical research
Clinical research has shown that resorbable scaffolds, or naturally dissolving stents, offer comparable efficacy and safety profile to drug-eluting stents. Specifically, the Magmaris resorbable magnesium scaffold has reported a favorable safety profile with low target lesion failure and scaffold thrombosis rates. These clinical results are comparable to thin-strutted drug-eluting stents in similar patient populations.
The Absorb naturally dissolving stent has also been investigated in single-arm trials and in randomized trials comparing it to a drug-eluting stent. Early and late major adverse cardiac events, revascularizations, and scaffold thromboses have been uncommon and similar to the Xience DES, a market leader in the drug eluting stent category.
[Smits P, Ziekenhuis M, Absorb Extend: an interim report on the 36-month clinical outcomes from the first 250 patients enrolled. Presented at Transcatheter Cardiovascular Therapeutics (TCT) conference 2014 in Washington, DC, September 2014] Studies in real-world patients are ongoing.
Imaging studies show that the Absorb naturally dissolving stent begins to dissolve from six to 12 months and is fully dissolved between two and three years after it is placed in the artery.
Two small platinum markers remain to mark the location of the original PCI. The artery is able to dilate and contract, called vasomotion, similar to a healthy blood vessel at two years.
References
{{DEFAULTSORT:Bioresorbable Stents
Cardiology
Interventional cardiology
Implants (medicine)