An LC circuit, also called a resonant circuit, tank circuit, or tuned circuit, is an
electric circuit
An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, c ...
consisting of an
inductor
An inductor, also called a coil, choke, or reactor, is a passive two-terminal electrical component that stores energy in a magnetic field when electric current flows through it. An inductor typically consists of an insulated wire wound into a c ...
, represented by the letter L, and a
capacitor
A capacitor is a device that stores electrical energy in an electric field by virtue of accumulating electric charges on two close surfaces insulated from each other. It is a passive electronic component with two terminals.
The effect of ...
, represented by the letter C, connected together. The circuit can act as an electrical
resonator
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
, an electrical analogue of a
tuning fork
A tuning fork is an acoustic resonator in the form of a two-pronged fork with the prongs (tines) formed from a U-shaped bar of elastic metal (usually steel). It resonates at a specific constant pitch when set vibrating by striking it against ...
, storing energy oscillating at the circuit's
resonant frequency
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
.
LC circuits are used either for generating signals at a particular frequency, or picking out a signal at a particular frequency from a more complex signal; this function is called a
bandpass filter
A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range.
Description
In electronics and signal processing, a filter is usually a two-port ...
. They are key components in many electronic devices, particularly radio equipment, used in circuits such as
oscillators
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
,
filters
Filter, filtering or filters may refer to:
Science and technology
Computing
* Filter (higher-order function), in functional programming
* Filter (software), a computer program to process a data stream
* Filter (video), a software component tha ...
,
tuners and
frequency mixer
In electronics, a mixer, or frequency mixer, is an electrical circuit that creates new frequencies from two signals applied to it. In its most common application, two signals are applied to a mixer, and it produces new signals at the sum and di ...
s.
An LC circuit is an idealized model since it assumes there is no dissipation of energy due to
resistance. Any practical implementation of an LC circuit will always include loss resulting from small but non-zero resistance within the components and connecting wires. The purpose of an LC circuit is usually to oscillate with minimal
damping
Damping is an influence within or upon an oscillatory system that has the effect of reducing or preventing its oscillation. In physical systems, damping is produced by processes that dissipate the energy stored in the oscillation. Examples in ...
, so the resistance is made as low as possible. While no practical circuit is without losses, it is nonetheless instructive to study this ideal form of the circuit to gain understanding and physical intuition. For a circuit model incorporating resistance, see
RLC circuit
An RLC circuit is an electrical circuit consisting of a electrical resistance, resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the ...
.
Terminology
The two-element LC circuit described above is the simplest type of inductor-capacitor network (or LC network). It is also referred to as a ''second order LC circuit'' to distinguish it from more complicated (higher order) LC networks with more inductors and capacitors. Such LC networks with more than two reactances may have more than one
resonant frequency
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
.
The order of the network is the order of the
rational function
In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be rat ...
describing the network in the
complex frequency
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace (), is an integral transform that converts a function of a real variable (usually t, in the ''time domain'') to a function of a complex variable s (in the compl ...
variable . Generally, the order is equal to the number of L and C elements in the circuit and in any event cannot exceed this number.
Operation
An LC circuit, oscillating at its natural
resonant frequency
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
, can store
electrical energy
Electrical energy is energy related to forces on electrically charged particles and the movement of electrically charged particles (often electrons in wires, but not always). This energy is supplied by the combination of electric current and electr ...
. See the animation. A capacitor stores energy in the
electric field
An electric field (sometimes E-field) is the physical field that surrounds electrically charged particles and exerts force on all other charged particles in the field, either attracting or repelling them. It also refers to the physical field fo ...
() between its plates, depending on the
voltage
Voltage, also known as electric pressure, electric tension, or (electric) potential difference, is the difference in electric potential between two points. In a static electric field, it corresponds to the work needed per unit of charge to m ...
across it, and an inductor stores energy in its
magnetic field
A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
(), depending on the
current
Currents, Current or The Current may refer to:
Science and technology
* Current (fluid), the flow of a liquid or a gas
** Air current, a flow of air
** Ocean current, a current in the ocean
*** Rip current, a kind of water current
** Current (stre ...
through it.
If an inductor is connected across a charged capacitor, the voltage across the capacitor will drive a current through the inductor, building up a magnetic field around it. The voltage across the capacitor falls to zero as the charge is used up by the current flow. At this point, the energy stored in the coil's magnetic field induces a voltage across the coil, because inductors oppose changes in current. This induced voltage causes a current to begin to recharge the capacitor with a voltage of opposite polarity to its original charge. Due to
Faraday's law, the
EMF which drives the current is caused by a decrease in the magnetic field, thus the energy required to charge the capacitor is extracted from the magnetic field. When the magnetic field is completely dissipated the current will stop and the charge will again be stored in the capacitor, with the opposite polarity as before. Then the cycle will begin again, with the current flowing in the opposite direction through the inductor.
The charge flows back and forth between the plates of the capacitor, through the inductor. The energy oscillates back and forth between the capacitor and the inductor until (if not replenished from an external circuit) internal
resistance makes the oscillations die out. The tuned circuit's action, known mathematically as a
harmonic oscillator
In classical mechanics, a harmonic oscillator is a system that, when displaced from its Mechanical equilibrium, equilibrium position, experiences a restoring force ''F'' Proportionality (mathematics), proportional to the displacement ''x'':
\v ...
, is similar to a
pendulum
A pendulum is a weight suspended from a pivot so that it can swing freely. When a pendulum is displaced sideways from its resting, equilibrium position, it is subject to a restoring force due to gravity that will accelerate it back toward the ...
swinging back and forth, or water sloshing back and forth in a tank; for this reason the circuit is also called a ''tank circuit''.
The
natural frequency
Natural frequency, also known as eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any driving force.
The motion pattern of a system oscillating at its natural frequency is called the normal mode (if all pa ...
(that is, the frequency at which it will oscillate when isolated from any other system, as described above) is determined by the capacitance and inductance values. In most applications the tuned circuit is part of a larger circuit which applies
alternating current
Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
to it, driving continuous oscillations. If the frequency of the applied current is the circuit's natural resonant frequency (
natural frequency
Natural frequency, also known as eigenfrequency, is the frequency at which a system tends to oscillate in the absence of any driving force.
The motion pattern of a system oscillating at its natural frequency is called the normal mode (if all pa ...
below ),
resonance
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
will occur, and a small driving current can excite large amplitude oscillating voltages and currents. In typical tuned circuits in electronic equipment the oscillations are very fast, from thousands to billions of times per second.
Resonance effect
Resonance
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
occurs when an LC circuit is driven from an external source at an angular frequency at which the inductive and capacitive
reactances are equal in magnitude. The frequency at which this equality holds for the particular circuit is called the resonant frequency. The
resonant frequency
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
of the LC circuit is
:
where is the
inductance
Inductance is the tendency of an electrical conductor to oppose a change in the electric current flowing through it. The flow of electric current creates a magnetic field around the conductor. The field strength depends on the magnitude of the ...
in
henries
The henry (symbol: H) is the unit of electrical inductance in the International System of Units (SI). If a current of 1 ampere flowing through a coil produces flux linkage of 1 weber turn, that coil has a self inductance of 1 henry. The unit ...
, and is the
capacitance
Capacitance is the capability of a material object or device to store electric charge. It is measured by the change in charge in response to a difference in electric potential, expressed as the ratio of those quantities. Commonly recognized are ...
in
farad
The farad (symbol: F) is the unit of electrical capacitance, the ability of a body to store an electrical charge, in the International System of Units (SI). It is named after the English physicist Michael Faraday (1791–1867). In SI base unit ...
s. The
angular frequency
In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit tim ...
has units of
radian
The radian, denoted by the symbol rad, is the unit of angle in the International System of Units (SI) and is the standard unit of angular measure used in many areas of mathematics. The unit was formerly an SI supplementary unit (before that c ...
s per second.
The equivalent frequency in units of
hertz
The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that on ...
is
:
Applications
The resonance effect of the LC circuit has many important applications in signal processing and communications systems.
* The most common application of tank circuits is tuning radio transmitters and receivers. For example, when tuning a radio to a particular station, the LC circuits are set at resonance for that particular
carrier frequency
In telecommunications, a carrier wave, carrier signal, or just carrier, is a waveform (usually sinusoidal) that is modulated (modified) with an information-bearing signal for the purpose of conveying information. This carrier wave usually has a m ...
.
* A series resonant circuit provides voltage magnification.
* A parallel resonant circuit provides current magnification.
* A parallel resonant circuit can be used as load impedance in output circuits of RF amplifiers. Due to high impedance, the gain of amplifier is maximum at resonant frequency.
* Both parallel and series resonant circuits are used in
induction heating
Induction heating is the process of heating electrically conductive materials, namely metals or semi-conductors, by electromagnetic induction, through heat transfer passing through an induction coil that creates an electromagnetic field within th ...
.
LC circuits behave as electronic
resonators
A resonator is a device or system that exhibits resonance or resonant behavior. That is, it naturally oscillates with greater amplitude at some frequencies, called resonant frequencies, than at other frequencies. The oscillations in a resonator ...
, which are a key component in many applications:
*
Amplifiers
An amplifier, electronic amplifier or (informally) amp is an electronic device that can increase the magnitude of a signal (a time-varying voltage or current). It may increase the power significantly, or its main effect may be to boost the v ...
*
Oscillators
Oscillation is the repetitive or periodic variation, typically in time, of some measure about a central value (often a point of equilibrium) or between two or more different states. Familiar examples of oscillation include a swinging pendulum ...
*
Filters
Filter, filtering or filters may refer to:
Science and technology
Computing
* Filter (higher-order function), in functional programming
* Filter (software), a computer program to process a data stream
* Filter (video), a software component tha ...
*
Tuners
*
Mixers
*
Foster–Seeley discriminator The Foster–Seeley discriminator is a common type of FM detector circuit, invented in 1936 by Dudley E. FosterDudley E. Foster: biographical information and photo: ''Proceedings of the Institute of Radio Engineers'', vol. 29, page 571 (October 1 ...
*
Contactless cards
*
Graphics tablet
A graphics tablet (also known as a digitizer, digital graphic tablet, pen tablet, drawing tablet, external drawing pad or digital art board) is a computer input device that enables a user to hand-draw images, animations and graphics, with a spec ...
s
*
Electronic article surveillance
Electronic article surveillance is a technological method for preventing shoplifting from retail stores, pilferage of books from libraries or removal of properties from office buildings. Special tags are fixed to merchandise; these tags are remove ...
(security tags)
Time domain solution
Kirchhoff's laws
By
Kirchhoff's voltage law
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchho ...
, the voltage across the capacitor plus the voltage across the inductor must equal zero:
:
Likewise, by
Kirchhoff's current law
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhof ...
, the current through the capacitor equals the current through the inductor:
:
From the constitutive relations for the circuit elements, we also know that
:
Differential equation
Rearranging and substituting gives the second order
differential equation
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, an ...
:
The parameter , the resonant
angular frequency
In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit tim ...
, is defined as
:
Using this can simplify the differential equation:
:
The associated
Laplace transform
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace (), is an integral transform
In mathematics, an integral transform maps a function from its original function space into another function space via integra ...
is
:
thus
:
where is the
imaginary unit
The imaginary unit or unit imaginary number () is a solution to the quadratic equation x^2+1=0. Although there is no real number with this property, can be used to extend the real numbers to what are called complex numbers, using addition an ...
.
Solution
Thus, the complete solution to the differential equation is
:
and can be solved for and by considering the initial conditions. Since the exponential is
complex
Complex commonly refers to:
* Complexity, the behaviour of a system whose components interact in multiple ways so possible interactions are difficult to describe
** Complex system, a system composed of many components which may interact with each ...
, the solution represents a sinusoidal
alternating current
Alternating current (AC) is an electric current which periodically reverses direction and changes its magnitude continuously with time in contrast to direct current (DC) which flows only in one direction. Alternating current is the form in whic ...
. Since the electric current is a physical quantity, it must be real-valued. As a result, it can be shown that the constants and must be
complex conjugate
In mathematics, the complex conjugate of a complex number is the number with an equal real part and an imaginary part equal in magnitude but opposite in sign. That is, (if a and b are real, then) the complex conjugate of a + bi is equal to a - ...
s:
:
Now let
:
Therefore,
:
Next, we can use
Euler's formula
Euler's formula, named after Leonhard Euler, is a mathematical formula in complex analysis that establishes the fundamental relationship between the trigonometric functions and the complex exponential function. Euler's formula states that for an ...
to obtain a real
sinusoid
A sine wave, sinusoidal wave, or just sinusoid is a mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph. It is a type of continuous wave and also a smooth periodic function. It occurs often in ma ...
with
amplitude
The amplitude of a periodic variable is a measure of its change in a single period (such as time or spatial period). The amplitude of a non-periodic signal is its magnitude compared with a reference value. There are various definitions of amplit ...
,
angular frequency
In physics, angular frequency "''ω''" (also referred to by the terms angular speed, circular frequency, orbital frequency, radian frequency, and pulsatance) is a scalar measure of rotation rate. It refers to the angular displacement per unit tim ...
, and
phase angle .
Thus, the resulting solution becomes
:
:
Initial conditions
The initial conditions that would satisfy this result are
:
:
Series circuit
In the series configuration of the LC circuit, the inductor (L) and capacitor (C) are connected in series, as shown here. The total voltage across the open terminals is simply the sum of the voltage across the inductor and the voltage across the capacitor. The current into the positive terminal of the circuit is equal to the current through both the capacitor and the inductor.
:
Resonance
Inductive reactance
In electrical circuits, reactance is the opposition presented to alternating current by inductance or capacitance. Greater reactance gives smaller current for the same applied voltage. Reactance is similar to resistance in this respect, but does ...
magnitude increases as frequency increases, while
capacitive reactance
In electrical circuits, reactance is the opposition presented to alternating current by inductance or capacitance. Greater reactance gives smaller current for the same applied voltage. Reactance is similar to resistance in this respect, but does ...
magnitude decreases with the increase in frequency. At one particular frequency, these two reactances are equal in magnitude but opposite in sign; that frequency is called the resonant frequency for the given circuit.
Hence, at resonance,
:
Solving for , we have
:
which is defined as the resonant angular frequency of the circuit. Converting angular frequency (in radians per second) into frequency (in hertz), one has
:
In a series configuration, and cancel each other out. In real, rather than idealised, components, the current is opposed, mostly by the resistance of the coil windings. Thus, the current supplied to a series resonant circuit is maximal at resonance.
* In the limit as current is maximal. Circuit impedance is minimal. In this state, a circuit is called an ''acceptor circuit''
* For , . Hence, the circuit is capacitive.
* For , . Hence, the circuit is inductive.
Impedance
In the series configuration, resonance occurs when the complex electrical impedance of the circuit approaches zero.
First consider the
impedance of the series LC circuit. The total impedance is given by the sum of the inductive and capacitive impedances:
:
Writing the inductive impedance as and capacitive impedance as and substituting gives
:
Writing this expression under a common denominator gives
:
Finally, defining the natural angular frequency as
:
the impedance becomes
:
where
gives the reactance of the inductor at resonance.
The numerator implies that in the limit as , the total impedance will be zero and otherwise non-zero. Therefore the series LC circuit, when connected in series with a load, will act as a
band-pass filter
A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range.
Description
In electronics and signal processing, a filter is usually a two-por ...
having zero impedance at the resonant frequency of the LC circuit.
Parallel circuit
When the inductor (L) and capacitor (C) are connected in parallel as shown here, the voltage across the open terminals is equal to both the voltage across the inductor and the voltage across the capacitor. The total current flowing into the positive terminal of the circuit is equal to the sum of the current flowing through the inductor and the current flowing through the capacitor:
:
Resonance
When equals , the two branch currents are equal and opposite. They cancel out each other to give minimal current in the main line (in principle, zero current). However, there is a large current circulating between the capacitor and inductor. In principle, this circulating current is infinite, but in reality is limited by resistance in the circuit, particularly resistance in the inductor windings. Since total current is minimal, in this state the total impedance is maximal.
The resonant frequency is given by
:
Note that any branch current is not minimal at resonance, but each is given separately by dividing source voltage () by reactance (). Hence , as per
Ohm's law
Ohm's law states that the current through a conductor between two points is directly proportional to the voltage across the two points. Introducing the constant of proportionality, the resistance, one arrives at the usual mathematical equat ...
.
* At , the line current is minimal. The total impedance is maximal. In this state a circuit is called a ''rejector circuit''.
* Below , the circuit is inductive.
* Above , the circuit is capacitive.
Impedance
The same analysis may be applied to the parallel LC circuit. The total impedance is then given by
:
and after substitution of and and simplification, gives
:
Using
:
it further simplifies to
:
Note that
:
but for all other values of the impedance is finite.
Thus, the parallel LC circuit connected in series with a load will act as
band-stop filter
In signal processing, a band-stop filter or band-rejection filter is a filter that passes most frequencies unaltered, but attenuates those in a specific range to very low levels. It is the opposite of a band-pass filter. A notch filter is a ba ...
having infinite impedance at the resonant frequency of the LC circuit, while the parallel LC circuit connected in parallel with a load will act as
band-pass filter
A band-pass filter or bandpass filter (BPF) is a device that passes frequencies within a certain range and rejects (attenuates) frequencies outside that range.
Description
In electronics and signal processing, a filter is usually a two-por ...
.
Laplace solution
The LC circuit can be solved using the
Laplace transform
In mathematics, the Laplace transform, named after its discoverer Pierre-Simon Laplace (), is an integral transform
In mathematics, an integral transform maps a function from its original function space into another function space via integra ...
.
We begin by defining the relation between current and voltage across the capacitor and inductor in the usual way:
:
and
Then by application of Kirchoff's laws, we may arrive at the system's governing differential equations
:
With initial conditions
and
Making the following definitions,
:
and
gives
:
Now we apply the Laplace transform.
:
:
The Laplace transform has turned our differential equation into an algebraic equation. Solving for in the domain (frequency domain) is much simpler viz.
:
which can be transformed back to the time domain via the inverse Laplace transform:
:
The final term is dependent on the exact form of the input voltage. Two common cases are the
Heaviside step function
The Heaviside step function, or the unit step function, usually denoted by or (but sometimes , or ), is a step function, named after Oliver Heaviside (1850–1925), the value of which is zero for negative arguments and one for positive argume ...
and a
sine wave
A sine wave, sinusoidal wave, or just sinusoid is a curve, mathematical curve defined in terms of the ''sine'' trigonometric function, of which it is the graph of a function, graph. It is a type of continuous wave and also a Smoothness, smooth p ...
. For a Heaviside step function we get
:
:
:
For the case of a sinusoidal function as input we get:
:
:
:
so
:
History
The first evidence that a capacitor and inductor could produce electrical oscillations was discovered in 1826 by French scientist
Felix Savary
Felix may refer to:
* Felix (name), people and fictional characters with the name
Places
* Arabia Felix is the ancient Latin name of Yemen
* Felix, Spain, a municipality of the province Almería, in the autonomous community of Andalusia, S ...
.
He found that when a
Leyden jar
A Leyden jar (or Leiden jar, or archaically, sometimes Kleistian jar) is an electrical component that stores a high-voltage electric charge (from an external source) between electrical conductors on the inside and outside of a glass jar. It typi ...
was discharged through a wire wound around an iron needle, sometimes the needle was left magnetized in one direction and sometimes in the opposite direction. He correctly deduced that this was caused by a damped oscillating discharge current in the wire, which reversed the magnetization of the needle back and forth until it was too small to have an effect, leaving the needle magnetized in a random direction. American physicist
Joseph Henry
Joseph Henry (December 17, 1797– May 13, 1878) was an American scientist who served as the first Secretary of the Smithsonian Institution. He was the secretary for the National Institute for the Promotion of Science, a precursor of the Smith ...
repeated Savary's experiment in 1842 and came to the same conclusion, apparently independently.
Irish scientist
William Thomson (Lord Kelvin) in 1853 showed mathematically that the discharge of a Leyden jar through an inductance should be oscillatory, and derived its resonant frequency.
British radio researcher
Oliver Lodge
Sir Oliver Joseph Lodge, (12 June 1851 – 22 August 1940) was a British physicist and writer involved in the development of, and holder of key patents for, radio. He identified electromagnetic radiation independent of Heinrich Rudolf Hertz, H ...
, by discharging a large battery of Leyden jars through a long wire, created a tuned circuit with its resonant frequency in the audio range, which produced a musical tone from the spark when it was discharged.
In 1857, German physicist
Berend Wilhelm Feddersen
Berend Wilhelm Feddersen (26 March 1832 in Schleswig – 1 July 1918 in Leipzig) was a
German physicist.
Biography
Feddersen studied chemistry and physics at the University of Göttingen, where he became member of Burschenschaft Hannovera ( ...
photographed the spark produced by a resonant Leyden jar circuit in a rotating mirror, providing visible evidence of the oscillations.
In 1868, Scottish physicist
James Clerk Maxwell
James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
calculated the effect of applying an alternating current to a circuit with inductance and capacitance, showing that the response is maximum at the resonant frequency.
The first example of an electrical
resonance
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
curve was published in 1887 by German physicist
Heinrich Hertz
Heinrich Rudolf Hertz ( ; ; 22 February 1857 – 1 January 1894) was a German physicist who first conclusively proved the existence of the electromagnetic waves predicted by James Clerk Maxwell's Maxwell's equations, equations of electrom ...
in his pioneering paper on the discovery of radio waves, showing the length of spark obtainable from his spark-gap LC resonator detectors as a function of frequency.
One of the first demonstrations of
resonance
Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
between tuned circuits was Lodge's "syntonic jars" experiment around 1889.
He placed two resonant circuits next to each other, each consisting of a Leyden jar connected to an adjustable one-turn coil with a spark gap. When a high voltage from an induction coil was applied to one tuned circuit, creating sparks and thus oscillating currents, sparks were excited in the other tuned circuit only when the circuits were adjusted to resonance. Lodge and some English scientists preferred the term "''syntony''" for this effect, but the term "''resonance''" eventually stuck.
The first practical use for LC circuits was in the 1890s in
spark-gap radio transmitters to allow the receiver and transmitter to be tuned to the same frequency. The first patent for a radio system that allowed tuning was filed by Lodge in 1897, although the first practical systems were invented in 1900 by Italian radio pioneer
Guglielmo Marconi
Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi (; 25 April 187420 July 1937) was an Italians, Italian inventor and electrical engineering, electrical engineer, known for his creation of a practical radio wave-based Wireless telegrap ...
.
See also
*
RL circuit
A resistor–inductor circuit (RL circuit), or RL filter or RL network, is an electric circuit composed of resistors and inductors driven by a voltage or current source. A first-order RL circuit is composed of one resistor and one inductor, eithe ...
*
RC circuit
A resistor–capacitor circuit (RC circuit), or RC filter or RC network, is an electric circuit composed of resistors and capacitors. It may be driven by a voltage or current source and these will produce different responses. A first order RC c ...
*
RLC circuit
An RLC circuit is an electrical circuit consisting of a electrical resistance, resistor (R), an inductor (L), and a capacitor (C), connected in series or in parallel. The name of the circuit is derived from the letters that are used to denote the ...
References
External links
An electric pendulumby Tony Kuphaldt is a classical story about the operation of LC tank
is another excellent LC resource.
{{Authority control
Analog circuits
Electronic filter topology
Linear electronic circuits