In
mathematics, the representation theory of the symmetric group is a particular case of the
representation theory of finite groups
The representation theory of groups is a part of mathematics which examines how groups act on given structures.
Here the focus is in particular on operations of groups on vector spaces. Nevertheless, groups acting on other groups or on sets are ...
, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from
symmetric function theory to
quantum chemistry
Quantum chemistry, also called molecular quantum mechanics, is a branch of physical chemistry focused on the application of quantum mechanics to chemical systems, particularly towards the quantum-mechanical calculation of electronic contribution ...
studies of atoms, molecules and solids.
The
symmetric group
In abstract algebra, the symmetric group defined over any set is the group whose elements are all the bijections from the set to itself, and whose group operation is the composition of functions. In particular, the finite symmetric group ...
S
''n'' has order ''n''!. Its
conjugacy classes are labeled by
partitions of ''n''. Therefore according to the representation theory of a finite group, the number of inequivalent
irreducible representations, over the
complex number
In mathematics, a complex number is an element of a number system that extends the real numbers with a specific element denoted , called the imaginary unit and satisfying the equation i^= -1; every complex number can be expressed in the for ...
s, is equal to the number of partitions of ''n''. Unlike the general situation for finite groups, there is in fact a natural way to parametrize irreducible representations by the same set that parametrizes conjugacy classes, namely by partitions of ''n'' or equivalently
Young diagram In mathematics, a Young tableau (; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups ...
s of size ''n''.
Each such irreducible representation can in fact be realized over the integers (every permutation acting by a matrix with integer coefficients); it can be explicitly constructed by computing the
Young symmetrizers acting on a space generated by the
Young tableaux of shape given by the Young diagram. The dimension
of the representation that corresponds to the Young diagram
is given by the
hook length formula
In combinatorial mathematics, the hook length formula is a formula for the number of standard Young tableaux whose shape is a given Young diagram.
It has applications in diverse areas such as representation theory, probability, and algorithm an ...
.
To each irreducible representation ρ we can associate an irreducible character, χ
ρ.
To compute χ
ρ(π) where π is a permutation, one can use the combinatorial
Murnaghan–Nakayama rule
. Note that χ
ρ is constant on conjugacy classes,
that is, χ
ρ(π) = χ
ρ(σ
−1πσ) for all permutations σ.
Over other
fields the situation can become much more complicated. If the field ''K'' has
characteristic equal to zero or greater than ''n'' then by
Maschke's theorem the
group algebra ''K''S
''n'' is semisimple. In these cases the irreducible representations defined over the integers give the complete set of irreducible representations (after reduction modulo the characteristic if necessary).
However, the irreducible representations of the symmetric group are not known in arbitrary characteristic. In this context it is more usual to use the language of
modules rather than representations. The representation obtained from an irreducible representation defined over the integers by reducing modulo the characteristic will not in general be irreducible. The modules so constructed are called ''
Specht modules In mathematics, a Specht module is one of the representations of symmetric groups studied by .
They are indexed by partitions, and in characteristic 0 the Specht modules of partitions of ''n'' form a complete set of irreducible representations of t ...
'', and every irreducible does arise inside some such module. There are now fewer irreducibles, and although they can be classified they are very poorly understood. For example, even their
dimension
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
s are not known in general.
The determination of the irreducible modules for the symmetric group over an arbitrary field is widely regarded as one of the most important open problems in representation theory.
Low-dimensional representations
Symmetric groups
The lowest-dimensional representations of the symmetric groups can be described explicitly,
and over arbitrary fields. The smallest two degrees in characteristic zero are described here:
Every symmetric group has a one-dimensional representation called the trivial representation, where every element acts as the one by one identity matrix. For , there is another irreducible representation of degree 1, called the sign representation or alternating character, which takes a permutation to the one by one matrix with entry ±1 based on the
sign of the permutation. These are the only one-dimensional representations of the symmetric groups, as one-dimensional representations are abelian, and the
abelianization
In mathematics, more specifically in abstract algebra, the commutator subgroup or derived subgroup of a group is the subgroup generated by all the commutators of the group.
The commutator subgroup is important because it is the smallest normal ...
of the symmetric group is C
2, the
cyclic group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bi ...
of order 2.
For all ''n'', there is an ''n''-dimensional representation of the symmetric group of order ''n!'', called the , which consists of permuting ''n'' coordinates. This has the trivial subrepresentation consisting of vectors whose coordinates are all equal. The orthogonal complement consists of those vectors whose coordinates sum to zero, and when , the representation on this subspace is an -dimensional irreducible representation, called the standard representation. Another -dimensional irreducible representation is found by tensoring with the sign representation. An
exterior power of the standard representation
is irreducible provided
.
For , these are the lowest-dimensional irreducible representations of S
''n'' – all other irreducible representations have dimension at least ''n''. However for , the surjection from S
4 to S
3 allows S
4 to inherit a two-dimensional irreducible representation. For , the exceptional transitive embedding of S
5 into S
6 produces another pair of five-dimensional irreducible representations.
Alternating groups
![Compound of five tetrahedra](https://upload.wikimedia.org/wikipedia/commons/6/6c/Compound_of_five_tetrahedra.png)
The representation theory of the
alternating group
In mathematics, an alternating group is the group of even permutations of a finite set. The alternating group on a set of elements is called the alternating group of degree , or the alternating group on letters and denoted by or
Basic pr ...
s is similar, though the sign representation disappears. For , the lowest-dimensional irreducible representations are the trivial representation in dimension one, and the -dimensional representation from the other summand of the permutation representation, with all other irreducible representations having higher dimension, but there are exceptions for smaller ''n''.
The alternating groups for have only one one-dimensional irreducible representation, the trivial representation. For there are two additional one-dimensional irreducible representations, corresponding to maps to the cyclic group of order 3: and .
* For , there is just one irreducible representation of degree , and this is the smallest degree of a non-trivial irreducible representation.
* For the obvious analogue of the -dimensional representation is reducible – the permutation representation coincides with the regular representation, and thus breaks up into the three one-dimensional representations, as is abelian; see the
discrete Fourier transform
In mathematics, the discrete Fourier transform (DFT) converts a finite sequence of equally-spaced Sampling (signal processing), samples of a function (mathematics), function into a same-length sequence of equally-spaced samples of the discre ...
for representation theory of cyclic groups.
* For , there is just one irreducible representation, but there are the exceptional irreducible representations of dimension 1.
* For , there are two dual irreducible representations of dimension 3, corresponding to its action as
icosahedral symmetry
In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron. Examples of other polyhedra with icosahedral symmetry include the regular dodecahedron (the dual of t ...
.
* For , there is an extra irreducible representation of dimension 5 corresponding to the exceptional transitive embedding of ''A''
5 in ''A''
6.
Tensor products of representations
Kronecker coefficients
The
tensor product
In mathematics, the tensor product V \otimes W of two vector spaces and (over the same Field (mathematics), field) is a vector space to which is associated a bilinear map V\times W \to V\otimes W that maps a pair (v,w),\ v\in V, w\in W to an e ...
of two representations of
corresponding to the Young diagrams
is a combination of irreducible representations of
,
:
The coefficients
are called the Kronecker coefficients of the symmetric group.
They can be computed from the
characters of the representations :
:
The sum is over partitions
of
, with
the corresponding conjugacy classes. The values of the characters
can be computed using the
Frobenius formula In mathematics, specifically in representation theory, the Frobenius formula, introduced by G. Frobenius, computes the characters of irreducible representations of the symmetric group ''S'n''. Among the other applications, the formula can be use ...
. The coefficients
are
:
where
is the number of times
appears in
, so that
.
A few examples, written in terms of Young diagrams :
:
:
:
:
There is a simple rule for computing
for any Young diagram
: the result is the sum of all Young diagrams that are obtained from
by removing one box and then adding one box, where the coefficients are one except for
itself, whose coefficient is
, i.e., the number of different row lengths minus one.
A constraint on the irreducible constituents of
is
:
where the depth
of a Young diagram is the number of boxes that do not belong to the first row.
Reduced Kronecker coefficients
For
a Young diagram and
,
is a Young diagram of size
. Then
is a bounded, non-decreasing function of
, and
:
is called a reduced Kronecker coefficient
or stable Kronecker coefficient.
There are known bounds on the value of
where
reaches its limit.
The reduced Kronecker coefficients are structure constants of Deligne categories of representations of
with
.
In contrast to Kronecker coefficients, reduced Kronecker coefficients are defined for any triple of Young diagrams, not necessarily of the same size. If
, then
coincides with the
Littlewood-Richardson coefficient .
Reduced Kronecker coefficients can be written as linear combinations of Littlewood-Richardson coefficients via a change of bases in the space of symmetric functions, giving rise to expressions that are manifestly integral although not manifestly positive.
Reduced Kronecker coefficients can also be written in terms of Kronecker and Littlewood-Richardson coefficients
via Littlewood's formula
:
Conversely, it is possible to recover the Kronecker coefficients as linear combinations of reduced Kronecker coefficients.
Reduced Kronecker coefficients are implemented in the computer algebra system
SageMath
SageMath (previously Sage or SAGE, "System for Algebra and Geometry Experimentation") is a computer algebra system (CAS) with features covering many aspects of mathematics, including algebra, combinatorics, graph theory, numerical analysis, nu ...
.
Eigenvalues of complex representations
Given an element
of cycle-type
and order
, the eigenvalues of
in a complex representation of
are of the type
with
, where the integers
are called the cyclic exponents of
with respect to the representation.
There is a combinatorial description of the cyclic exponents of the symmetric group (and
wreath products thereof). Defining
, let the
-index of a
standard Young tableau In mathematics, a Young tableau (; plural: tableaux) is a combinatorial object useful in representation theory and Schubert calculus. It provides a convenient way to describe the group representations of the symmetric and general linear groups ...
be the sum of the values of
over the tableau's descents,
.
Then the cyclic exponents of the representation of
described by the Young diagram
are the
-indices of the corresponding Young tableaux.
In particular, if
is of order
, then
, and
coincides with the major index of
(the sum of the descents). The cyclic exponents of an irreducible representation of
then describe
how it decomposes into representations of the
cyclic group
In group theory, a branch of abstract algebra in pure mathematics, a cyclic group or monogenous group is a group, denoted C''n'', that is generated by a single element. That is, it is a set of invertible elements with a single associative bi ...
, with
being interpreted as the image of
in the (one-dimensional) representation characterized by
.
See also
*
Alternating polynomials
*
Symmetric polynomials
In mathematics, a symmetric polynomial is a polynomial in variables, such that if any of the variables are interchanged, one obtains the same polynomial. Formally, is a ''symmetric polynomial'' if for any permutation of the subscripts one has ...
*
Schur functor
*
Robinson–Schensted correspondence
*
Schur–Weyl duality
*
Jucys–Murphy element
*
Garnir relations
References
Cited Publications
*
*
*
* {{Citation , last1=James , first1=G. D. , title=On the minimal dimensions of irreducible representations of symmetric groups , doi=10.1017/S0305004100000803 , mr=720791 , year=1983 , journal=Mathematical Proceedings of the Cambridge Philosophical Society , issn=0305-0041 , volume=94 , issue=3 , pages=417–424, bibcode=1983MPCPS..94..417J
Representation theory of finite groups
Permutations
Integer partitions