Remix Fuel
   HOME

TheInfoList



OR:

Remix Fuel was developed in Russia to make use of Mixed Recycled Uranium and Plutonium from spent nuclear fuel to manufacture fresh fuel suitable for widespread use in Russian reactor designs.


Compared to "conventional" MOX-fuel

MOX or
Mixed Oxide Fuel Mixed oxide fuel, commonly referred to as MOX fuel, is nuclear fuel that contains more than one oxide of fissile material, usually consisting of plutonium blended with natural uranium, reprocessed uranium, or depleted uranium. MOX fuel is an alt ...
as deployed in some western European and East Asian nations generally consists of depleted Uranium mixed with between 4% and 7%
reactor grade plutonium Reactor-grade plutonium (RGPu) is the isotopic grade of plutonium that is found in spent nuclear fuel after the uranium-235 primary fuel that a nuclear power reactor uses has burnt up. The uranium-238 from which most of the plutonium isotopes der ...
. Only a few Generation II and about half of Generation III reactor designs are MOX fuel compliant allowing them to use a 100% MOX fuel load with no safety concerns.


Nuclear physics background

However all moderated reactors using lightly enriched Uranium fuel produce Plutonium in the course of normal operation as Uranium-238 (typically 94% to 97% of the uranium content in lightly enriched uranium) captures neutrons and undergoes successive beta decays until it is transmuted to
plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three mai ...
. This internally produced Plutonium increases in percentage until it is common enough that a growing percentage of Fission reactions within the fuel are actually within the Plutonium generated during the fuel cycle. Approximately half of the
Plutonium-239 Plutonium-239 (239Pu or Pu-239) is an isotope of plutonium. Plutonium-239 is the primary fissile isotope used for the production of nuclear weapons, although uranium-235 is also used for that purpose. Plutonium-239 is also one of the three mai ...
"bred" during the fuel cycle is fissioned and another 25% is transmuted through additional neutron capture into other Plutonium isotopes, primarily
Pu-240 Plutonium-240 ( or Pu-240) is an isotope of plutonium formed when plutonium-239 captures a neutron. The detection of its spontaneous fission led to its discovery in 1944 at Los Alamos and had important consequences for the Manhattan Project. 240 ...
. Virtually all of the
minor actinides The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkeliu ...
present in
spent nuclear fuel Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and ...
are produced by successive neutron capture of the Plutonium produced and as decay products of the more short lived isotopes. As a consequence of these factors the fresh Uranium Oxide fuel initially generates all of its fission reactions from U-235 but at the end of the cycle this has shifted to 50% U-235/50% Pu-239 fission reactions. In total about 33% of the energy generated by Uranium fuel at the end of its life cycle actually comes from the bred and consumed Pu-239. Because the thermal neutron spectrum is not very good for fissioning Pu-239 the fuel shifts from 100% Uranium at start of cycle to 96% Uranium, 1% Plutonium and 3% mixture of transuranic
minor actinides The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkeliu ...
and fission products. The longer the fuel remains in the reactor undergoing fission the more the Uranium percentage decreases while the other materials increase. In effect all power reactors have been long known to be capable of operating with a mixed fissionable core containing 1% reactor grade Plutonium without issues arising like those caused by the more highly concentrated MOX fuel used in western reactors. Ultimately, the spent fuel is removed from power reactors long before all available "fuel" is actually consumed, as
neutron poison In applications such as nuclear reactors, a neutron poison (also called a neutron absorber or a nuclear poison) is a substance with a large neutron absorption cross-section. In such applications, absorbing neutrons is normally an undesirable eff ...
s and minor actinides with undesirable properties build up to unacceptable levels and alter the reaction parameters too much. Nuclear reprocessing is primarily done to remove undesirable parts of the spent fuel and either re-use the other parts or store them as waste.
Reprocessed uranium Reprocessed uranium (RepU) is the uranium recovered from nuclear reprocessing, as done commercially in France, the UK and Japan and by nuclear weapons states' military plutonium production programs. This uranium makes up the bulk of the material s ...
for example, which is derived from spent fuel, usually has a higher
Uranium-235 Uranium-235 (235U or U-235) is an isotope of uranium making up about 0.72% of natural uranium. Unlike the predominant isotope uranium-238, it is fissile, i.e., it can sustain a nuclear chain reaction. It is the only fissile isotope that exi ...
content than natural uranium.


Process

Russia spent nearly a decade developing techniques similar to Nuclear
Pyroprocessing Pyroprocessing (from Greek Πυρος = ''fire'') is a process in which materials are subjected to high temperatures (typically over 800 °C) in order to bring about a chemical or physical change. Pyroprocessing includes such terms as ore-ro ...
that allows them to reprocess spent nuclear fuel without separating the recycled Uranium and Plutonium from the other metals as is done in the
PUREX PUREX (plutonium uranium reduction extraction) is a chemical method used to purify fuel for nuclear reactors or nuclear weapons. PUREX is the ''de facto'' standard aqueous nuclear reprocessing method for the recovery of uranium and plutonium ...
chemical reprocessing system used to manufacture MOX fuel. The Recovered Mixture of Uranium and Reactor Grade Plutonium is then converted to Oxide and blended with medium enriched fresh Uranium Oxide fuel in a carefully measured proportion to create a mixture with 4% U-235 and 1% Reactor Grade Plutonium. After extensive testing in a reactor starting in 2016 Russia is now deploying Remix Fuel as replacement fuel for their
VVER The water-water energetic reactor (WWER), or VVER (from russian: водо-водяной энергетический реактор; transliterates as ; ''water-water power reactor'') is a series of pressurized water reactor designs originally de ...
Pressurized Water Reactors as of February 2020.


References

{{Reflist Fuels Fuel production Nuclear reprocessing