HOME

TheInfoList



OR:

In
statistics Statistics (from German language, German: ''wikt:Statistik#German, Statistik'', "description of a State (polity), state, a country") is the discipline that concerns the collection, organization, analysis, interpretation, and presentation of ...
, the frequency (or absolute frequency) of an
event Event may refer to: Gatherings of people * Ceremony, an event of ritual significance, performed on a special occasion * Convention (meeting), a gathering of individuals engaged in some common interest * Event management, the organization of eve ...
i is the number n_i of times the observation has occurred/recorded in an
experiment An experiment is a procedure carried out to support or refute a hypothesis, or determine the efficacy or likelihood of something previously untried. Experiments provide insight into Causality, cause-and-effect by demonstrating what outcome oc ...
or study. These frequencies are often depicted graphically or in tabular form.


Types

The cumulative frequency is the total of the absolute frequencies of all events at or below a certain point in an ordered list of events. The (or
empirical probability The empirical probability, relative frequency, or experimental probability of an event is the ratio of the number of outcomes in which a specified event occurs to the total number of trials, not in a theoretical sample space but in an actual experi ...
) of an event is the absolute frequency normalized by the total number of events: : f_i = \frac = \frac. The values of f_i for all events i can be plotted to produce a frequency distribution. In the case when n_i = 0 for certain i,
pseudocount In statistics, additive smoothing, also called Laplace smoothing or Lidstone smoothing, is a technique used to smooth categorical data. Given a set of observation counts \textstyle from a \textstyle -dimensional multinomial distribution with \ ...
s can be added.


Depicting frequency distributions

A frequency distribution shows us a summarized grouping of data divided into mutually exclusive classes and the number of occurrences in a class. It is a way of showing unorganized data notably to show results of an election, income of people for a certain region, sales of a product within a certain period, student loan amounts of graduates, etc. Some of the graphs that can be used with frequency distributions are
histograms A histogram is an approximate representation of the frequency distribution, distribution of numerical data. The term was first introduced by Karl Pearson. To construct a histogram, the first step is to "Data binning, bin" (or "Data binning, buck ...
, line charts, bar charts and pie charts. Frequency distributions are used for both qualitative and quantitative data.


Construction

# Decide the number of classes. Too many classes or too few classes might not reveal the basic shape of the data set, also it will be difficult to interpret such frequency distribution. The ideal number of classes may be determined or estimated by formula: \text = C = 1 + 3.3 \log n (log base 10), or by the square-root choice formula C = \sqrt where ''n'' is the total number of observations in the data. (The latter will be much too large for large data sets such as population statistics.) However, these formulas are not a hard rule and the resulting number of classes determined by formula may not always be exactly suitable with the data being dealt with. # Calculate the range of the data (Range = Max – Min) by finding the minimum and maximum data values. Range will be used to determine the class interval or class width. # Decide the width of the classes, denoted by ''h'' and obtained by h = \frac (assuming the class intervals are the same for all classes). Generally the class interval or class width is the same for all classes. The classes all taken together must cover at least the distance from the lowest value (minimum) in the data to the highest (maximum) value. Equal class intervals are preferred in frequency distribution, while unequal class intervals (for example logarithmic intervals) may be necessary in certain situations to produce a good spread of observations between the classes and avoid a large number of empty, or almost empty classes. # Decide the individual class limits and select a suitable starting point of the first class which is arbitrary; it may be less than or equal to the minimum value. Usually it is started before the minimum value in such a way that the midpoint (the average of lower and upper class limits of the first class) is properly placed. # Take an observation and mark a vertical bar (, ) for a class it belongs. A running tally is kept till the last observation. # Find the frequencies, relative frequency, cumulative frequency etc. as required. The following are some commonly used methods of depicting frequency:


Histograms

A histogram is a representation of tabulated frequencies, shown as adjacent
rectangle In Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a parallelogram containi ...
s or
square In Euclidean geometry, a square is a regular quadrilateral, which means that it has four equal sides and four equal angles (90-degree angles, π/2 radian angles, or right angles). It can also be defined as a rectangle with two equal-length adj ...
s (in some of situations), erected over discrete intervals (bins), with an area proportional to the frequency of the observations in the interval. The height of a rectangle is also equal to the frequency density of the interval, i.e., the frequency divided by the width of the interval. The total area of the histogram is equal to the number of data. A histogram may also be normalized displaying relative frequencies. It then shows the proportion of cases that fall into each of several
categories Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being *Categories (Aristotle), ''Categories'' (Aristotle) *Category (Kant) ...
, with the total area equaling 1. The categories are usually specified as consecutive, non-overlapping intervals of a variable. The categories (intervals) must be adjacent, and often are chosen to be of the same size. The rectangles of a histogram are drawn so that they touch each other to indicate that the original variable is continuous.


Bar graphs

A bar chart or bar graph is a
chart A chart (sometimes known as a graph) is a graphical representation for data visualization, in which "the data is represented by symbols, such as bars in a bar chart, lines in a line chart, or slices in a pie chart". A chart can represent tabu ...
with
rectangular In Euclidean geometry, Euclidean plane geometry, a rectangle is a quadrilateral with four right angles. It can also be defined as: an equiangular quadrilateral, since equiangular means that all of its angles are equal (360°/4 = 90°); or a par ...
bars with
length Length is a measure of distance. In the International System of Quantities, length is a quantity with dimension distance. In most systems of measurement a base unit for length is chosen, from which all other units are derived. In the Interna ...
s proportional to the values that they represent. The bars can be plotted vertically or horizontally. A vertical bar chart is sometimes called a column bar chart.


Frequency distribution table

A
frequency distribution In statistics, the frequency (or absolute frequency) of an event i is the number n_i of times the observation has occurred/recorded in an experiment or study. These frequencies are often depicted graphically or in tabular form. Types The cumula ...
table is an arrangement of the values that one or more variables take in a
sample Sample or samples may refer to: Base meaning * Sample (statistics), a subset of a population – complete data set * Sample (signal), a digital discrete sample of a continuous analog signal * Sample (material), a specimen or small quantity of s ...
. Each entry in the table contains the frequency or count of the occurrences of values within a particular group or interval, and in this way, the table summarizes the
distribution Distribution may refer to: Mathematics *Distribution (mathematics), generalized functions used to formulate solutions of partial differential equations * Probability distribution, the probability of a particular value or value range of a vari ...
of values in the sample. This is an example of a univariate (=single
variable Variable may refer to: * Variable (computer science), a symbolic name associated with a value and whose associated value may be changed * Variable (mathematics), a symbol that represents a quantity in a mathematical expression, as used in many ...
) frequency table. The frequency of each response to a survey question is depicted. A different tabulation scheme aggregates values into bins such that each bin encompasses a range of values. For example, the heights of the students in a class could be organized into the following frequency table.


Joint frequency distributions

Bivariate joint frequency distributions are often presented as (two-way)
contingency tables In statistics, a contingency table (also known as a cross tabulation or crosstab) is a type of table in a matrix format that displays the (multivariate) frequency distribution of the variables. They are heavily used in survey research, business ...
: The total row and total column report the marginal frequencies or
marginal distribution In probability theory and statistics, the marginal distribution of a subset of a collection of random variables is the probability distribution of the variables contained in the subset. It gives the probabilities of various values of the variables ...
, while the body of the table reports the joint frequencies.


Interpretation

Under the frequency interpretation of
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
, it is assumed that as the length of a series of trials increases without bound, the fraction of experiments in which a given event occurs will approach a fixed value, known as the limiting relative frequency.von Mises, Richard (1939) ''Probability, Statistics, and Truth'' (in German) (English translation, 1981: Dover Publications; 2 Revised edition. ) (p.14)''The Frequency theory'' Chapter 5; discussed in Donald Gilles, ''Philosophical theories of probability'' (2000), Psychology Press. , p. 88. This interpretation is often contrasted with
Bayesian probability Bayesian probability is an Probability interpretations, interpretation of the concept of probability, in which, instead of frequentist probability, frequency or propensity probability, propensity of some phenomenon, probability is interpreted as re ...
. In fact, the term 'frequentist' was first used by M. G. Kendall in 1949, to contrast with
Bayesians Thomas Bayes (/beɪz/; c. 1701 – 1761) was an English statistician, philosopher, and Presbyterian minister. Bayesian () refers either to a range of concepts and approaches that relate to statistical methods based on Bayes' theorem, or a follower ...
, whom he called "non-frequentists". He observed :3....we may broadly distinguish two main attitudes. One takes probability as 'a degree of rational belief', or some similar idea...the second defines probability in terms of frequencies of occurrence of events, or by relative proportions in 'populations' or 'collectives'; (p. 101) :... :12. It might be thought that the differences between the frequentists and the non-frequentists (if I may call them such) are largely due to the differences of the domains which they purport to cover. (p. 104) :... :''I assert that this is not so'' ... The essential distinction between the frequentists and the non-frequentists is, I think, that the former, in an effort to avoid anything savouring of matters of opinion, seek to define probability in terms of the objective properties of a population, real or hypothetical, whereas the latter do not. mphasis in original:


Applications

Managing and operating on frequency tabulated data is much simpler than operation on raw data. There are simple algorithms to calculate median, mean, standard deviation etc. from these tables.
Statistical hypothesis testing A statistical hypothesis test is a method of statistical inference used to decide whether the data at hand sufficiently support a particular hypothesis. Hypothesis testing allows us to make probabilistic statements about population parameters. ...
is founded on the assessment of differences and similarities between frequency distributions. This assessment involves measures of
central tendency In statistics, a central tendency (or measure of central tendency) is a central or typical value for a probability distribution.Weisberg H.F (1992) ''Central Tendency and Variability'', Sage University Paper Series on Quantitative Applications ...
or
averages In ordinary language, an average is a single number taken as representative of a list of numbers, usually the sum of the numbers divided by how many numbers are in the list (the arithmetic mean). For example, the average of the numbers 2, 3, 4, 7, ...
, such as the
mean There are several kinds of mean in mathematics, especially in statistics. Each mean serves to summarize a given group of data, often to better understand the overall value (magnitude and sign) of a given data set. For a data set, the ''arithme ...
and
median In statistics and probability theory, the median is the value separating the higher half from the lower half of a data sample, a population, or a probability distribution. For a data set, it may be thought of as "the middle" value. The basic fe ...
, and measures of variability or