HOME

TheInfoList



OR:

A regenerative fuel cell or reverse fuel cell (RFC) is a
fuel cell A fuel cell is an electrochemical cell that converts the chemical energy of a fuel (often hydrogen) and an oxidizing agent (often oxygen) into electricity through a pair of redox reactions. Fuel cells are different from most batteries in requ ...
run in reverse mode, which consumes electricity and chemical B to produce chemical A. By definition, the process of any fuel cell could be reversed. However, a given device is usually optimized for operating in one mode and may not be built in such a way that it can be operated backwards. Standard fuel cells operated backwards generally do not make very efficient systems unless they are purpose-built to do so as with high-pressure electrolysers, regenerative fuel cells,
solid-oxide electrolyser cell A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water (and/or carbon dioxide) by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas (and/or carbon m ...
s and
unitized regenerative fuel cell A unitized regenerative fuel cell (URFC) is a fuel cell based on the proton exchange membrane which can do the electrolysis of water in regenerative mode and function in the other mode as a fuel cell recombining oxygen and hydrogen gas to produce e ...
s.


Process description

A hydrogen fueled
proton exchange membrane fuel cell A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, for example, uses
hydrogen gas Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, a ...
(H2) and oxygen (O2) to produce electricity and water (H2O); a regenerative hydrogen fuel cell uses electricity and water to produce hydrogen and oxygen. When the fuel cell is operated in regenerative mode, the anode for the electricity production mode (fuel cell mode) becomes the cathode in the hydrogen generation mode (reverse fuel cell mode), and vice versa. When an external voltage is applied, water at the anode side will undergo electrolysis to form oxygen and protons; protons will be transported through the solid electrolyte to the cathode where they can be reduced to form hydrogen. In this reverse mode, the polarity of the cell is opposite to that for the fuel cell mode. The following reactions describe the chemical process in the hydrogen generation mode: At cathode: H2O + 2e → H2 + O2− At anode: O2− → 1/2O2 + 2e Overall: H2O → 1/2O2 + H2


Solid oxide regenerative fuel cell

One example of RFC is solid oxide regenerative fuel cell.
Solid oxide fuel cell A solid oxide fuel cell (or SOFC) is an electrochemical conversion device that produces electricity directly from oxidizing a fuel. Fuel cells are characterized by their electrolyte material; the SOFC has a solid oxide or ceramic electrolyte. A ...
operates at high temperatures with high fuel-to-electricity conversion ratios and it is a good candidate for high temperature electrolysis. Less electricity is required for electrolysis process in solid oxide regenerative fuel cells (SORFC) due to high temperature. The electrolyte can be O2− conducting and/or proton (H+) conducting. The state of the art for O2− conducting yttria stabilized zirconia (YSZ) based SORFC using Ni–YSZ as the hydrogen electrode and LSM (or LSM–YSZ) as the oxygen electrode has been actively studied. Dönitz and Erdle reported on the operation of YSZ electrolyte cells with current densities of 0.3 A cm−2 and 100% Faraday efficiency at only 1.07 V. The recent study by researchers from Sweden shows that ceria-based composite electrolytes, where both proton and oxide ion conductions exist, produce high current output for fuel cell operation and high hydrogen output for electrolysis operation. Zirconia doped with scandia and ceria (10Sc1CeSZ) is also investigated as potential electrolyte in SORFC for hydrogen production at intermediate temperatures(500-750 °C). It is reported that 10Sc1CeSZ shows good behavior and produces high current densities, with suitable electrodes. Current density–voltage ( j–V) curves and impedance spectra are investigated and recorded. Impedance spectra are realized applying an ac current of 1–2A RMS (root-mean-square) in the frequency range from 30 kHz to 10−1 Hz. Impedance spectra shows that the resistance is high at low frequencies(<10 kHz) and near zero at high frequencies(>10 kHz). Since high frequency corresponds to electrolyte activities, while low frequencies corresponds to electrodes process, it can be deduced that only a small fraction of the overall resistance is from the electrolyte and most resistance comes from anode and cathode. Hence, developing high performance electrodes are essential for high efficiency SORFC. Area specific resistance can be obtained from the slope of j-V curve. Commonly used/tested electrodes materials are nickel/zirconia cermet (Ni/YSZ) and lanthanum-substituted strontium titanate/ceria composite for SORFC cathode, and lanthanum strontium manganite (LSM) for SORFC anode. Other anode materials can be lanthanum strontium ferrite (LSF), lanthanum strontium copper ferrite and lanthanum strontium cobalt ferrite. Studies show that Ni/YSZ electrode was less active in reverse fuel cell operation than in fuel cell operation, and this can be attributed to a diffusion-limited process in the electrolysis direction, or its susceptibility to aging in a high-steam environment, primarily due to coarsening of nickel particles. Therefore, alternative materials such as the titanate/ceria composite (La0.35Sr0.65TiO3–Ce0.5La0.5O2−δ)or (La0.75Sr0.25)0.95Mn0.5Cr0.5O3 (LSCM) have been proposed electrolysis cathodes. Both LSF and LSM/YSZ are reported as good anode candidates for electrolysis mode. Furthermore, higher operation temperature and higher absolute humidity ratio can result in lower area specific resistance.


See also

*
Glossary of fuel cell terms The Glossary of fuel cell terms lists the definitions of many terms used within the fuel cell industry. The terms in this fuel cell glossary may be used by fuel cell industry associations, in education material and fuel cell codes and standards t ...
*
Hydrogen technologies Hydrogen technologies are technologies that relate to the production and use of hydrogen as a part hydrogen economy. Hydrogen technologies are applicable for many uses. Some hydrogen technologies are carbon neutral and could have a role in preven ...
*
Flow Battery A flow battery, or redox flow battery (after reduction–oxidation), is a type of electrochemical cell where chemical energy is provided by two chemical components dissolved in liquids that are pumped through the system on separate sides of a ...


References


External links


2005– PEM regenerative fuel cell energy storage systemData sheet Model Car with a reversible fuel cell(PDF)Compact Fuel Cell with Interleaved Electrolysis Layers
{{Electrolysis Fuel cells