Redox Ladder
   HOME

TheInfoList



OR:

A redox gradient is a series of reduction-oxidation ( redox) reactions sorted according to redox potential. The redox ladder displays the order in which redox reactions occur based on the free energy gained from redox pairs. These redox gradients form both spatially and temporally as a result of differences in microbial processes, chemical composition of the environment, and oxidative potential. Common environments where redox gradients exist are
coastal marshes A marsh is a wetland that is dominated by herbaceous rather than woody plant species.Keddy, P.A. 2010. Wetland Ecology: Principles and Conservation (2nd edition). Cambridge University Press, Cambridge, UK. 497 p Marshes can often be found a ...
, lakes, contaminant plumes, and soils. The Earth has a global redox gradient with an oxidizing environment at the surface and increasingly reducing conditions below the surface. Redox gradients are generally understood at the macro level, but characterization of redox reactions in heterogeneous environments at the micro-scale require further research and more sophisticated measurement techniques.


Measuring Redox Conditions

Redox conditions are measured according to the redox potential (Eh) in volts, which represents the tendency for electrons to transfer from an electron donor to an
electron acceptor An electron acceptor is a chemical entity that accepts electrons transferred to it from another compound. It is an oxidizing agent that, by virtue of its accepting electrons, is itself reduced in the process. Electron acceptors are sometimes mista ...
. Eh can be calculated using half reactions and the Nernst equation. An Eh of zero represents the redox couple of the standard hydrogen electrode H+/H2, a positive Eh indicates an oxidizing environment (electrons will be accepted), and a negative Eh indicates a reducing environment (electrons will be donated). In a redox gradient, the most energetically favorable chemical reaction occurs at the “top” of the redox ladder and the least energetically favorable reaction occurs at the “bottom” of the ladder. Eh can be measured by collecting samples in the field and performing analyses in the lab, or by inserting an electrode into the environment to collect in situ measurements. Typical environments to measure redox potential are in bodies of water, soils, and sediments, all of which can exhibit high levels of heterogeneity. Collecting a high number of samples can produce high spatial resolution, but at the cost of low temporal resolution since samples only reflect a singular a snapshot in time. In situ monitoring can provide high temporal resolution by collecting continuous real-time measurements, but low spatial resolution since the electrode is in a fixed location. Redox properties can also be tracked with high spatial and temporal resolution through the use of induced-polarization imaging, however, further research is needed to fully understand contributions of redox species to polarization.


Environmental conditions

Redox gradients are commonly found in the environment as functions of both space and time, particularly in soils and aquatic environments. Gradients are caused by varying physiochemical properties including availability of oxygen, soil hydrology, chemical species present, and microbial processes. Specific environments that are commonly characterized by redox gradients include waterlogged soils,
wetlands A wetland is a distinct ecosystem that is flooded or saturated by water, either permanently (for years or decades) or seasonally (for weeks or months). Flooding results in oxygen-free (anoxic) processes prevailing, especially in the soils. The ...
, contaminant plumes, and marine pelagic and hemipelagic sediments. The following is a list of common reactions that occur in the environment in order from oxidizing to reducing (organisms performing the reaction in parentheses): #
Aerobic respiration Cellular respiration is the process by which biological fuels are oxidised in the presence of an inorganic electron acceptor such as oxygen to produce large amounts of energy, to drive the bulk production of ATP. Cellular respiration may be des ...
(aerobes: aerobic organisms) # Denitrification (denitrifiers:
denitrifying bacteria Denitrifying bacteria are a diverse group of bacteria that encompass many different phyla. This group of bacteria, together with denitrifying fungi and archaea, is capable of performing denitrification as part of the nitrogen cycle. Denitrification ...
) # Manganese reduction (Manganese reducers) # Iron reduction (iron reducers: iron-reducing bacteria) # Sulfate reduction (sulfate reducers: Sulfur-reducing bacteria) #
Methanogenesis Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group ...
( methanogens)


Aquatic Environments

Redox gradients form in water columns and their sediments. Varying levels of oxygen (oxic, suboxic, hypoxic) within the water column alter redox chemistry and which redox reactions can occur. Development of oxygen minimum zones also contributes to formation of redox gradients.
Benthic The benthic zone is the ecological region at the lowest level of a body of water such as an ocean, lake, or stream, including the sediment surface and some sub-surface layers. The name comes from ancient Greek, βένθος (bénthos), meaning "t ...
sediments exhibit redox gradients produced by variations in mineral composition, organic matter availability, structure, and sorption dynamics. Limited transport of dissolved electrons through subsurface sediments, combined with varying pore sizes of sediments creates significant heterogeneity in benthic sediments. Oxygen availability in sediments determines which microbial respiration pathways can occur, resulting in a vertical stratification of redox processes as oxygen availability decreases with depth.


Terrestrial environments

Soil ''E''h is also largely a function of hydrological conditions. In the event of a flood, saturated soils can shift from oxic to anoxic, creating a reducing environment as anaerobic microbial processes dominate. Moreover, small anoxic hotspots may develop within soil pore spaces, creating reducing conditions. With time, the starting ''E''h of a soil can be restored as water drains and the soil dries out. Soils with redox gradients formed by ascending groundwater are classified as gleysols, while soils with gradients formed by stagnant water are classified as stagnosols and planosols. Soil ''E''h generally ranges from −300 to +900 mV. The table below summarizes typical ''E''h values for various soil conditions: Generally accepted ''E''h limits that are tolerable by plants are +300 mV < ''E''h < +700 mV. 300 mV is the boundary value that separates aerobic from anaerobic conditions in wetland soils. Redox potential (Eh) is also closely tied to pH, and both have significant influence on the function of soil-plant-microorganism systems. The main source of electrons in soil is
organic matter Organic matter, organic material, or natural organic matter refers to the large source of carbon-based compounds found within natural and engineered, terrestrial, and aquatic environments. It is matter composed of organic compounds that have c ...
. Organic matter consumes oxygen as it decomposes, resulting in reducing soil conditions and lower Eh.


Role of microorganisms

Redox gradients form based on resource availability and physiochemical conditions (pH, salinity, temperature) and support stratified communities of microbes. Microbes carry out differing respiration processes (
methanogenesis Methanogenesis or biomethanation is the formation of methane coupled to energy conservation by microbes known as methanogens. Organisms capable of producing methane for energy conservation have been identified only from the domain Archaea, a group ...
, sulfate reduction, etc.) based on the conditions around them and further amplify redox gradients present in the environment. However, distribution of microorganisms cannot solely be determined from thermodynamics (redox ladder), but is also influenced by ecological and physiological factors. Redox gradients form along contaminant plumes, in both aquatic and terrestrial settings, as a function of the contaminant concentration and the impacts it has on relevant chemical processes and microbial communities. The highest rates of organic pollutant degradation along a redox gradient are found at the oxic-anoxic interface. In groundwater, this oxic-anoxic environment is referred to as the
capillary fringe The capillary fringe is the subsurface layer in which groundwater seeps up from a water table by capillary action to fill pores. Pores at the base of the capillary fringe are filled with water due to tension saturation. This saturated portion of t ...
, where the water table meets soil and fills empty pores. Because this transition zone is both oxic and anoxic, electron acceptors and donors are in high abundance and there is a high level of microbial activity, leading to the highest rates of contaminant biodegradation.
Benthic The benthic zone is the ecological region at the lowest level of a body of water such as an ocean, lake, or stream, including the sediment surface and some sub-surface layers. The name comes from ancient Greek, βένθος (bénthos), meaning "t ...
sediments are heterogeneous in nature and subsequently exhibit redox gradients. Due to this heterogeneity, gradients of reducing and oxidizing chemical species do not always overlap enough to support electron transport needs of niche microbial communities. Cable bacteria have been characterized as sulfide-oxidizing bacteria that assist in connecting these areas of undersupplied and excess electrons to complete the electron transport for otherwise unavailable redox reactions. Biofilms, found in tidal flats, glaciers,
hydrothermal vent A hydrothermal vent is a fissure on the seabed from which geothermally heated water discharges. They are commonly found near volcanically active places, areas where tectonic plates are moving apart at mid-ocean ridges, ocean basins, and hotspot ...
s, and at the bottoms of aquatic environments, also exhibit redox gradients. The community of microbes—often metal- or sulfate-reducing bacteria—produces redox gradients on the micrometer scale as a function of spatial physiochemical variability. See sulfate-methane transition zone for coverage of microbial processes in SMTZs.


See also

* Anaerobic respiration * Chemocline * Gibbs free energy * Dead zone (ecology) *
Hypoxia (environmental) Hypoxia refers to low oxygen conditions. Normally, 20.9% of the gas in the atmosphere is oxygen. The partial pressure of oxygen in the atmosphere is 20.9% of the total barometric pressure. In water, oxygen levels are much lower, approximately 7 p ...
*
Marine sediment Marine sediment, or ocean sediment, or seafloor sediment, are deposits of insoluble particles that have accumulated on the seafloor. These particles have their origins in soil and rocks and have been transported from the land to the sea, mainly ...
* Redox * Redox potential * Remineralization * Sediment-water interface * Sulfate-methane transition zone


References

{{reflist Aquatic ecology Biogeochemistry Chemical oceanography Electrochemistry Environmental chemistry Environmental science Limnology Marine geology Oceanographical terminology Oceanography Redox Sediments Soil science