HOME

TheInfoList



OR:

In mathematics, a rational variety is an
algebraic variety Algebraic varieties are the central objects of study in algebraic geometry, a sub-field of mathematics. Classically, an algebraic variety is defined as the set of solutions of a system of polynomial equations over the real or complex numbers. ...
, over a given
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
''K'', which is
birationally equivalent In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational fu ...
to a projective space of some dimension over ''K''. This means that its function field is isomorphic to :K(U_1, \dots , U_d), the field of all rational functions for some set \ of indeterminates, where ''d'' is the
dimension In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it. Thus, a line has a dimension of one (1D) because only one coor ...
of the variety.


Rationality and parameterization

Let ''V'' be an
affine algebraic variety Affine may describe any of various topics concerned with connections or affinities. It may refer to: * Affine, a relative by marriage in law and anthropology * Affine cipher, a special case of the more general substitution cipher * Affine com ...
of dimension ''d'' defined by a prime ideal ''I'' = ⟨''f''1, ..., ''f''''k''⟩ in K _1, \dots , X_n/math>. If ''V'' is rational, then there are ''n'' + 1 polynomials ''g''0, ..., ''g''''n'' in K(U_1, \dots , U_d) such that f_i(g_1/g_0, \ldots, g_n/g_0)=0. In order words, we have a x_i=\frac(u_1,\ldots,u_d) of the variety. Conversely, such a rational parameterization induces a
field homomorphism Field theory is the branch of mathematics in which fields are studied. This is a glossary of some terms of the subject. (See field theory (physics) for the unrelated field theories in physics.) Definition of a field A field is a commutative ri ...
of the field of functions of ''V'' into K(U_1, \dots , U_d). But this homomorphism is not necessarily
onto In mathematics, a surjective function (also known as surjection, or onto function) is a function that every element can be mapped from element so that . In other words, every element of the function's codomain is the image of one element of ...
. If such a parameterization exists, the variety is said to be unirational. Lüroth's theorem (see below) implies that unirational curves are rational. Castelnuovo's theorem implies also that, in characteristic zero, every unirational surface is rational.


Rationality questions

A rationality question asks whether a given field extension is ''rational'', in the sense of being (up to isomorphism) the function field of a rational variety; such field extensions are also described as
purely transcendental In mathematics, particularly in algebra, a field extension is a pair of fields E\subseteq F, such that the operations of ''E'' are those of ''F'' restricted to ''E''. In this case, ''F'' is an extension field of ''E'' and ''E'' is a subfield of ...
. More precisely, the rationality question for the field extension K \subset L is this: is L isomorphic to a rational function field over K in the number of indeterminates given by the
transcendence degree In abstract algebra, the transcendence degree of a field extension ''L'' / ''K'' is a certain rather coarse measure of the "size" of the extension. Specifically, it is defined as the largest cardinality of an algebraically independent subset of ...
? There are several different variations of this question, arising from the way in which the fields K and L are constructed. For example, let K be a field, and let :\ be indeterminates over ''K'' and let ''L'' be the field generated over ''K'' by them. Consider a finite group G permuting those indeterminates over ''K''. By standard
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
, the set of fixed points of this
group action In mathematics, a group action on a space is a group homomorphism of a given group into the group of transformations of the space. Similarly, a group action on a mathematical structure is a group homomorphism of a group into the automorphism ...
is a subfield of L, typically denoted L^G. The rationality question for K \subset L^G is called Noether's problem and asks if this field of fixed points is or is not a purely transcendental extension of ''K''. In the paper on
Galois theory In mathematics, Galois theory, originally introduced by Évariste Galois, provides a connection between field theory and group theory. This connection, the fundamental theorem of Galois theory, allows reducing certain problems in field theory to ...
she studied the problem of parameterizing the equations with given Galois group, which she reduced to "Noether's problem". (She first mentioned this problem in where she attributed the problem to E. Fischer.) She showed this was true for ''n'' = 2, 3, or 4. found a counter-example to the Noether's problem, with ''n'' = 47 and ''G'' a cyclic group of order 47.


Lüroth's theorem

A celebrated case is Lüroth's problem, which
Jacob Lüroth Jacob Lüroth (18 February 1844, Mannheim, Germany – 14 September 1910, Munich, Germany) was a German mathematician who proved Lüroth's theorem and introduced Lüroth quartics. His name is sometimes written Lueroth, following the common pr ...
solved in the nineteenth century. Lüroth's problem concerns subextensions ''L'' of ''K''(''X''), the rational functions in the single indeterminate ''X''. Any such field is either equal to ''K'' or is also rational, i.e. ''L'' = ''K''(''F'') for some rational function ''F''. In geometrical terms this states that a non-constant
rational map In mathematics, in particular the subfield of algebraic geometry, a rational map or rational mapping is a kind of partial function between algebraic varieties. This article uses the convention that varieties are irreducible. Definition Formal d ...
from the
projective line In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a ''point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; ...
to a curve ''C'' can only occur when ''C'' also has
genus Genus ( plural genera ) is a taxonomic rank used in the biological classification of living and fossil organisms as well as viruses. In the hierarchy of biological classification, genus comes above species and below family. In binomial nom ...
0. That fact can be read off geometrically from the
Riemann–Hurwitz formula In mathematics, the Riemann–Hurwitz formula, named after Bernhard Riemann and Adolf Hurwitz, describes the relationship of the Euler characteristics of two surfaces when one is a ''ramified covering'' of the other. It therefore connects ramif ...
. Even though Lüroth's theorem is often thought as a non elementary result, several elementary short proofs have been discovered for long. These simple proofs use only the basics of field theory and Gauss's lemma for primitive polynomials (see e.g.).


Unirationality

A unirational variety ''V'' over a field ''K'' is one dominated by a rational variety, so that its function field ''K''(''V'') lies in a pure transcendental field of finite type (which can be chosen to be of finite degree over ''K''(''V'') if ''K'' is infinite). The solution of Lüroth's problem shows that for algebraic curves, rational and unirational are the same, and Castelnuovo's theorem implies that for complex surfaces unirational implies rational, because both are characterized by the vanishing of both the arithmetic genus and the second plurigenus. Zariski found some examples ( Zariski surfaces) in characteristic ''p'' > 0 that are unirational but not rational. showed that a cubic three-fold is in general not a rational variety, providing an example for three dimensions that unirationality does not imply rationality. Their work used an
intermediate Jacobian In mathematics, the intermediate Jacobian of a compact Kähler manifold or Hodge structure is a complex torus that is a common generalization of the Jacobian variety of a curve and the Picard variety and the Albanese variety. It is obtained by ...
. showed that all non-singular quartic threefolds are irrational, though some of them are unirational. found some unirational 3-folds with non-trivial torsion in their third cohomology group, which implies that they are not rational. For any field ''K'',
János Kollár János Kollár (born 7 June 1956) is a Hungarian mathematician, specializing in algebraic geometry. Professional career Kollár began his studies at the Eötvös University in Budapest and later received his PhD at Brandeis University in 1984 ...
proved in 2000 that a smooth
cubic hypersurface In mathematics, a cubic form is a homogeneous polynomial of degree 3, and a cubic hypersurface is the zero set of a cubic form. In the case of a cubic form in three variables, the zero set is a cubic plane curve. In , Boris Delone and Dmitry Fad ...
of dimension at least 2 is unirational if it has a point defined over ''K''. This is an improvement of many classical results, beginning with the case of
cubic surface In mathematics, a cubic surface is a surface in 3-dimensional space defined by one polynomial equation of degree 3. Cubic surfaces are fundamental examples in algebraic geometry. The theory is simplified by working in projective space rather th ...
s (which are rational varieties over an algebraic closure). Other examples of varieties that are shown to be unirational are many cases of the moduli space of curves.


Rationally connected variety

A rationally connected variety (or ''uniruled variety'') ''V'' is a projective algebraic variety over an algebraically closed field such that through every two points there passes the image of a regular map from the
projective line In mathematics, a projective line is, roughly speaking, the extension of a usual line by a point called a ''point at infinity''. The statement and the proof of many theorems of geometry are simplified by the resultant elimination of special cases; ...
into ''V''. Equivalently, a variety is rationally connected if every two points are connected by a
rational curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
contained in the variety.. This definition differs form that of path connectedness only by the nature of the path, but is very different, as the only algebraic curves which are rationally connected are the rational ones. Every rational variety, including the projective spaces, is rationally connected, but the converse is false. The class of the rationally connected varieties is thus a generalization of the class of the rational varieties. Unirational varieties are rationally connected, but it is not known if the converse holds.


Stably rational varieties

A variety ''V'' is called ''stably rational'' if V \times \mathbf P^m is rational for some m \ge 0. Any rational variety is thus, by definition, stably rational. Examples constructed by show, that the converse is false however. showed that very general
hypersurface In geometry, a hypersurface is a generalization of the concepts of hyperplane, plane curve, and surface. A hypersurface is a manifold or an algebraic variety of dimension , which is embedded in an ambient space of dimension , generally a Euclidea ...
s V \subset \mathbf P^ are not stably rational, provided that the degree of ''V'' is at least \log_2 N+2.


See also

*
Rational curve In mathematics, an affine algebraic plane curve is the zero set of a polynomial in two variables. A projective algebraic plane curve is the zero set in a projective plane of a homogeneous polynomial in three variables. An affine algebraic plane c ...
*
Rational surface In algebraic geometry, a branch of mathematics, a rational surface is a surface birationally equivalent to the projective plane, or in other words a rational variety of dimension two. Rational surfaces are the simplest of the 10 or so classes of su ...
*
Severi–Brauer variety In mathematics, a Severi–Brauer variety over a field ''K'' is an algebraic variety ''V'' which becomes isomorphic to a projective space over an algebraic closure of ''K''. The varieties are associated to central simple algebras in such a way ...
*
Birational geometry In mathematics, birational geometry is a field of algebraic geometry in which the goal is to determine when two algebraic varieties are isomorphic outside lower-dimensional subsets. This amounts to studying mappings that are given by rational ...


Notes


References

* * * * * *. *. * * *{{Citation, last1=Schreieder, first1=Stefan, title=Stably irrational hypersurfaces of small slopes, journal=Journal of the American Mathematical Society, year=2019, volume=32, issue=4, pages=1171–1199, doi=10.1090/jams/928, arxiv=1801.05397, s2cid=119326067 Field (mathematics) Algebraic varieties Birational geometry