HOME

TheInfoList



OR:

In
mathematics Mathematics is a field of study that discovers and organizes methods, Mathematical theory, theories and theorems that are developed and Mathematical proof, proved for the needs of empirical sciences and mathematics itself. There are many ar ...
, a rational number is a
number A number is a mathematical object used to count, measure, and label. The most basic examples are the natural numbers 1, 2, 3, 4, and so forth. Numbers can be represented in language with number words. More universally, individual numbers can ...
that can be expressed as the
quotient In arithmetic, a quotient (from 'how many times', pronounced ) is a quantity produced by the division of two numbers. The quotient has widespread use throughout mathematics. It has two definitions: either the integer part of a division (in th ...
or
fraction A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
of two
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, a numerator and a non-zero
denominator A fraction (from , "broken") represents a part of a whole or, more generally, any number of equal parts. When spoken in everyday English, a fraction describes how many parts of a certain size there are, for example, one-half, eight-fifths, thre ...
. For example, is a rational number, as is every integer (for example, The
set Set, The Set, SET or SETS may refer to: Science, technology, and mathematics Mathematics *Set (mathematics), a collection of elements *Category of sets, the category whose objects and morphisms are sets and total functions, respectively Electro ...
of all rational numbers is often referred to as "the rationals", and is closed under
addition Addition (usually signified by the Plus and minus signs#Plus sign, plus symbol, +) is one of the four basic Operation (mathematics), operations of arithmetic, the other three being subtraction, multiplication, and Division (mathematics), divis ...
,
subtraction Subtraction (which is signified by the minus sign, –) is one of the four Arithmetic#Arithmetic operations, arithmetic operations along with addition, multiplication and Division (mathematics), division. Subtraction is an operation that repre ...
,
multiplication Multiplication is one of the four elementary mathematical operations of arithmetic, with the other ones being addition, subtraction, and division (mathematics), division. The result of a multiplication operation is called a ''Product (mathem ...
, and division by a nonzero rational number. It is a field under these operations and therefore also called the field of rationals or the field of rational numbers. It is usually denoted by boldface , or
blackboard bold Blackboard bold is a style of writing Emphasis (typography), bold symbols on a blackboard by doubling certain strokes, commonly used in mathematical lectures, and the derived style of typeface used in printed mathematical texts. The style is most ...
A rational number is a
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
. The real numbers that are rational are those whose
decimal expansion A decimal representation of a non-negative real number is its expression as a sequence of symbols consisting of decimal digits traditionally written with a single separator: r = b_k b_\cdots b_0.a_1a_2\cdots Here is the decimal separator ...
either terminates after a finite number of digits (example: ), or eventually begins to repeat the same finite
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
of digits over and over (example: ). This statement is true not only in
base 10 The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of t ...
, but also in every other integer base, such as the binary and
hexadecimal Hexadecimal (also known as base-16 or simply hex) is a Numeral system#Positional systems in detail, positional numeral system that represents numbers using a radix (base) of sixteen. Unlike the decimal system representing numbers using ten symbo ...
ones (see ). A
real number In mathematics, a real number is a number that can be used to measure a continuous one- dimensional quantity such as a duration or temperature. Here, ''continuous'' means that pairs of values can have arbitrarily small differences. Every re ...
that is not rational is called
irrational Irrationality is cognition, thinking, talking, or acting without rationality. Irrationality often has a negative connotation, as thinking and actions that are less useful or more illogical than other more rational alternatives. The concept of ...
. Irrational numbers include the
square root of 2 The square root of 2 (approximately 1.4142) is the positive real number that, when multiplied by itself or squared, equals the number 2. It may be written as \sqrt or 2^. It is an algebraic number, and therefore not a transcendental number. Te ...
, , and the
golden ratio In mathematics, two quantities are in the golden ratio if their ratio is the same as the ratio of their summation, sum to the larger of the two quantities. Expressed algebraically, for quantities and with , is in a golden ratio to if \fr ...
(). Since the set of rational numbers is
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
, and the set of real numbers is
uncountable In mathematics, an uncountable set, informally, is an infinite set that contains too many elements to be countable. The uncountability of a set is closely related to its cardinal number: a set is uncountable if its cardinal number is larger tha ...
,
almost all In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning o ...
real numbers are irrational. The field of rational numbers is the unique field that contains the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s, and is contained in any field containing the integers. In other words, the field of rational numbers is a
prime field In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is wid ...
. A field has characteristic zero if and only if it contains the rational numbers as a subfield. Finite
extensions Extension, extend or extended may refer to: Mathematics Logic or set theory * Axiom of extensionality * Extensible cardinal * Extension (model theory) * Extension (proof theory) * Extension (predicate logic), the set of tuples of values t ...
of are called
algebraic number field In mathematics, an algebraic number field (or simply number field) is an extension field K of the field of rational numbers such that the field extension K / \mathbb has finite degree (and hence is an algebraic field extension). Thus K is a ...
s, and the
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
of is the field of
algebraic number In mathematics, an algebraic number is a number that is a root of a function, root of a non-zero polynomial in one variable with integer (or, equivalently, Rational number, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is ...
s. In
mathematical analysis Analysis is the branch of mathematics dealing with continuous functions, limit (mathematics), limits, and related theories, such as Derivative, differentiation, Integral, integration, measure (mathematics), measure, infinite sequences, series ( ...
, the rational numbers form a
dense subset In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the ra ...
of the real numbers. The real numbers can be constructed from the rational numbers by completion, using
Cauchy sequence In mathematics, a Cauchy sequence is a sequence whose elements become arbitrarily close to each other as the sequence progresses. More precisely, given any small positive distance, all excluding a finite number of elements of the sequence are le ...
s,
Dedekind cut In mathematics, Dedekind cuts, named after German mathematician Richard Dedekind (but previously considered by Joseph Bertrand), are а method of construction of the real numbers from the rational numbers. A Dedekind cut is a partition of a set, ...
s, or infinite
decimal The decimal numeral system (also called the base-ten positional numeral system and denary or decanary) is the standard system for denoting integer and non-integer numbers. It is the extension to non-integer numbers (''decimal fractions'') of th ...
s (see
Construction of the real numbers In mathematics, there are several equivalent ways of defining the real numbers. One of them is that they form a complete ordered field that does not contain any smaller complete ordered field. Such a definition does not prove that such a complete o ...
).


Terminology

In mathematics, "rational" is often used as a noun abbreviating "rational number". The adjective ''rational'' sometimes means that the
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s are rational numbers. For example, a
rational point In number theory and algebraic geometry, a rational point of an algebraic variety is a point whose coordinates belong to a given field. If the field is not mentioned, the field of rational numbers is generally understood. If the field is the fiel ...
is a point with rational
coordinates In geometry, a coordinate system is a system that uses one or more numbers, or coordinates, to uniquely determine and standardize the Position (geometry), position of the Point (geometry), points or other geometric elements on a manifold such as ...
(i.e., a point whose coordinates are rational numbers); a ''rational matrix'' is a
matrix Matrix (: matrices or matrixes) or MATRIX may refer to: Science and mathematics * Matrix (mathematics), a rectangular array of numbers, symbols or expressions * Matrix (logic), part of a formula in prenex normal form * Matrix (biology), the m ...
of rational numbers; a ''rational polynomial'' may be a polynomial with rational coefficients, although the term "polynomial over the rationals" is generally preferred, to avoid confusion between " rational expression" and "
rational function In mathematics, a rational function is any function that can be defined by a rational fraction, which is an algebraic fraction such that both the numerator and the denominator are polynomials. The coefficients of the polynomials need not be ...
" (a
polynomial In mathematics, a polynomial is a Expression (mathematics), mathematical expression consisting of indeterminate (variable), indeterminates (also called variable (mathematics), variables) and coefficients, that involves only the operations of addit ...
is a rational expression and defines a rational function, even if its coefficients are not rational numbers). However, a rational curve ''is not'' a curve defined over the rationals, but a curve which can be parameterized by rational functions.


Etymology

Although nowadays ''rational numbers'' are defined in terms of ''ratios'', the term ''rational'' is not a derivation of ''ratio''. On the contrary, it is ''ratio'' that is derived from ''rational'': the first use of ''ratio'' with its modern meaning was attested in English about 1660, while the use of ''rational'' for qualifying numbers appeared almost a century earlier, in 1570. This meaning of ''rational'' came from the mathematical meaning of ''irrational'', which was first used in 1551, and it was used in "translations of Euclid (following his peculiar use of )". This unusual history originated in the fact that
ancient Greeks Ancient Greece () was a northeastern Mediterranean civilization, existing from the Greek Dark Ages of the 12th–9th centuries BC to the end of classical antiquity (), that comprised a loose collection of culturally and linguistically re ...
"avoided heresy by forbidding themselves from thinking of those rrationallengths as numbers". So such lengths were ''irrational'', in the sense of ''illogical'', that is "not to be spoken about" ( in Greek).


Arithmetic


Irreducible fraction

Every rational number may be expressed in a unique way as an
irreducible fraction An irreducible fraction (or fraction in lowest terms, simplest form or reduced fraction) is a fraction in which the numerator and denominator are integers that have no other common divisors than 1 (and −1, when negative numbers are considered). ...
where and are
coprime integers In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiva ...
and . This is often called the
canonical form In mathematics and computer science, a canonical, normal, or standard form of a mathematical object is a standard way of presenting that object as a mathematical expression. Often, it is one which provides the simplest representation of an obje ...
of the rational number. Starting from a rational number its canonical form may be obtained by dividing and by their
greatest common divisor In mathematics, the greatest common divisor (GCD), also known as greatest common factor (GCF), of two or more integers, which are not all zero, is the largest positive integer that divides each of the integers. For two integers , , the greatest co ...
, and, if , changing the sign of the resulting numerator and denominator.


Embedding of integers

Any integer can be expressed as the rational number which is its canonical form as a rational number.


Equality

:\frac = \frac if and only if ad = bc If both fractions are in canonical form, then: :\frac = \frac if and only if a = c and b = d


Ordering

If both denominators are positive (particularly if both fractions are in canonical form): :\frac < \frac if and only if ad < bc. On the other hand, if either denominator is negative, then each fraction with a negative denominator must first be converted into an equivalent form with a positive denominator—by changing the signs of both its numerator and denominator.


Addition

Two fractions are added as follows: :\frac + \frac = \frac. If both fractions are in canonical form, the result is in canonical form if and only if are
coprime integers In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiva ...
.


Subtraction

:\frac - \frac = \frac. If both fractions are in canonical form, the result is in canonical form if and only if are
coprime integers In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiva ...
.


Multiplication

The rule for multiplication is: :\frac \cdot\frac = \frac. where the result may be a reducible fraction—even if both original fractions are in canonical form.


Inverse

Every rational number has an
additive inverse In mathematics, the additive inverse of an element , denoted , is the element that when added to , yields the additive identity, 0 (zero). In the most familiar cases, this is the number 0, but it can also refer to a more generalized zero el ...
, often called its ''opposite'', : - \left( \frac \right) = \frac. If is in canonical form, the same is true for its opposite. A nonzero rational number has a
multiplicative inverse In mathematics, a multiplicative inverse or reciprocal for a number ''x'', denoted by 1/''x'' or ''x''−1, is a number which when Multiplication, multiplied by ''x'' yields the multiplicative identity, 1. The multiplicative inverse of a ra ...
, also called its ''reciprocal'', : \left(\frac\right)^ = \frac. If is in canonical form, then the canonical form of its reciprocal is either or depending on the sign of .


Division

If are nonzero, the division rule is :\frac = \frac. Thus, dividing by is equivalent to multiplying by the reciprocal of :\frac = \frac \cdot \frac.


Exponentiation to integer power

If is a non-negative integer, then :\left(\frac\right)^n = \frac. The result is in canonical form if the same is true for In particular, :\left(\frac\right)^0 = 1. If , then :\left(\frac\right)^ = \frac. If is in canonical form, the canonical form of the result is if or is even. Otherwise, the canonical form of the result is


Continued fraction representation

A finite continued fraction is an expression such as :a_0 + \cfrac, where are integers. Every rational number can be represented as a finite continued fraction, whose
coefficient In mathematics, a coefficient is a Factor (arithmetic), multiplicative factor involved in some Summand, term of a polynomial, a series (mathematics), series, or any other type of expression (mathematics), expression. It may be a Dimensionless qu ...
s can be determined by applying the
Euclidean algorithm In mathematics, the Euclidean algorithm,Some widely used textbooks, such as I. N. Herstein's ''Topics in Algebra'' and Serge Lang's ''Algebra'', use the term "Euclidean algorithm" to refer to Euclidean division or Euclid's algorithm, is a ...
to .


Other representations

* common fraction: * mixed numeral: *
repeating decimal A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that i ...
using a vinculum: 2.\overline 6 * repeating decimal using
parentheses A bracket is either of two tall fore- or back-facing punctuation marks commonly used to isolate a segment of text or data from its surroundings. They come in four main pairs of shapes, as given in the box to the right, which also gives their n ...
: 2.(6) *
continued fraction A continued fraction is a mathematical expression that can be written as a fraction with a denominator that is a sum that contains another simple or continued fraction. Depending on whether this iteration terminates with a simple fraction or not, ...
using traditional typography: 2 + \tfrac 1 * continued fraction in abbreviated notation: ; 1, 2/math> * Egyptian fraction: 2 + \tfrac 1 2 + \tfrac 1 6 * prime power decomposition: 2^3 \times 3^ * quote notation: 3'6 are different ways to represent the same rational value.


Formal construction

The rational numbers may be built as
equivalence class In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
es of
ordered pair In mathematics, an ordered pair, denoted (''a'', ''b''), is a pair of objects in which their order is significant. The ordered pair (''a'', ''b'') is different from the ordered pair (''b'', ''a''), unless ''a'' = ''b''. In contrast, the '' unord ...
s of
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s. More precisely, let be the set of the pairs of integers such . An
equivalence relation In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric, and transitive. The equipollence relation between line segments in geometry is a common example of an equivalence relation. A simpler example is equ ...
is defined on this set by : (m_1, n_1) \sim (m_2, n_2) \iff m_1 n_2 = m_2 n_1. Addition and multiplication can be defined by the following rules: :(m_1, n_1) + (m_2, n_2) \equiv (m_1n_2 + n_1m_2, n_1n_2), :(m_1, n_1) \times (m_2, n_2) \equiv (m_1m_2, n_1n_2). This equivalence relation is a
congruence relation In abstract algebra, a congruence relation (or simply congruence) is an equivalence relation on an algebraic structure (such as a group (mathematics), group, ring (mathematics), ring, or vector space) that is compatible with the structure in the ...
, which means that it is compatible with the addition and multiplication defined above; the set of rational numbers is the defined as the
quotient set In mathematics, when the elements of some set S have a notion of equivalence (formalized as an equivalence relation), then one may naturally split the set S into equivalence classes. These equivalence classes are constructed so that elements ...
by this equivalence relation, equipped with the addition and the multiplication induced by the above operations. (This construction can be carried out with any
integral domain In mathematics, an integral domain is a nonzero commutative ring in which the product of any two nonzero elements is nonzero. Integral domains are generalizations of the ring of integers and provide a natural setting for studying divisibilit ...
and produces its
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
.) The equivalence class of a pair is denoted Two pairs and belong to the same equivalence class (that is are equivalent) if and only if :m_1n_2 = m_2n_1. This means that :\frac = \frac if and only if :m_1n_2 = m_2n_1. Every equivalence class may be represented by infinitely many pairs, since :\cdots = \frac = \frac = \frac = \frac = \cdots. Each equivalence class contains a unique '' canonical representative element''. The canonical representative is the unique pair in the equivalence class such that and are
coprime In number theory, two integers and are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. Consequently, any prime number that divides does not divide , and vice versa. This is equiv ...
, and . It is called the representation in lowest terms of the rational number. The integers may be considered to be rational numbers identifying the integer with the rational number A
total order In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( re ...
may be defined on the rational numbers, that extends the natural order of the integers. One has :\frac \le \frac If :\begin & (n_1n_2 > 0 \quad \text \quad m_1n_2 \le n_1m_2) \\ & \qquad \text \\ & (n_1n_2 < 0 \quad \text \quad m_1n_2 \ge n_1m_2). \end


Properties

The set of all rational numbers, together with the addition and multiplication operations shown above, forms a field. has no field automorphism other than the identity. (A field automorphism must fix 0 and 1; as it must fix the sum and the difference of two fixed elements, it must fix every integer; as it must fix the quotient of two fixed elements, it must fix every rational number, and is thus the identity.) is a
prime field In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is wid ...
, which is a field that has no subfield other than itself. The rationals are the smallest field with characteristic zero. Every field of characteristic zero contains a unique subfield isomorphic to With the order defined above, is an
ordered field In mathematics, an ordered field is a field together with a total ordering of its elements that is compatible with the field operations. Basic examples of ordered fields are the rational numbers and the real numbers, both with their standard ord ...
that has no subfield other than itself, and is the smallest ordered field, in the sense that every ordered field contains a unique subfield
isomorphic In mathematics, an isomorphism is a structure-preserving mapping or morphism between two structures of the same type that can be reversed by an inverse mapping. Two mathematical structures are isomorphic if an isomorphism exists between the ...
to is the
field of fractions In abstract algebra, the field of fractions of an integral domain is the smallest field in which it can be embedded. The construction of the field of fractions is modeled on the relationship between the integral domain of integers and the fie ...
of the
integer An integer is the number zero (0), a positive natural number (1, 2, 3, ...), or the negation of a positive natural number (−1, −2, −3, ...). The negations or additive inverses of the positive natural numbers are referred to as negative in ...
s The
algebraic closure In mathematics, particularly abstract algebra, an algebraic closure of a field ''K'' is an algebraic extension of ''K'' that is algebraically closed. It is one of many closures in mathematics. Using Zorn's lemmaMcCarthy (1991) p.21Kaplansky ...
of i.e. the field of roots of rational polynomials, is the field of
algebraic number In mathematics, an algebraic number is a number that is a root of a function, root of a non-zero polynomial in one variable with integer (or, equivalently, Rational number, rational) coefficients. For example, the golden ratio (1 + \sqrt)/2 is ...
s. The rationals are a densely ordered set: between any two rationals, there sits another one, and, therefore, infinitely many other ones. For example, for any two fractions such that :\frac < \frac (where b,d are positive), we have :\frac < \frac < \frac. Any
totally ordered In mathematics, a total order or linear order is a partial order in which any two elements are comparable. That is, a total order is a binary relation \leq on some set X, which satisfies the following for all a, b and c in X: # a \leq a ( r ...
set which is countable, dense (in the above sense), and has no least or greatest element is order isomorphic to the rational numbers.


Countability

The set of positive rational numbers is
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
, as is illustrated in the figure. More precisely, one can sort the fractions by increasing values of the sum of the numerator and the denominator, and, for equal sums, by increasing numerator or denominator. This produces a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is cal ...
of fractions, from which one can remove the reducible fractions (in red on the figure), for getting a sequence that contains each rational number exactly once. This establishes a bijection between the rational numbers and the natural numbers, which maps each rational number to its rank in the sequence. A similar method can be used for numbering all rational numbers (positive and negative). As the set of all rational numbers is countable, and the set of all real numbers (as well as the set of irrational numbers) is uncountable, the set of rational numbers is a
null set In mathematical analysis, a null set is a Lebesgue measurable set of real numbers that has measure zero. This can be characterized as a set that can be covered by a countable union of intervals of arbitrarily small total length. The notio ...
, that is,
almost all In mathematics, the term "almost all" means "all but a negligible quantity". More precisely, if X is a set (mathematics), set, "almost all elements of X" means "all elements of X but those in a negligible set, negligible subset of X". The meaning o ...
real numbers are irrational, in the sense of
Lebesgue measure In measure theory, a branch of mathematics, the Lebesgue measure, named after French mathematician Henri Lebesgue, is the standard way of assigning a measure to subsets of higher dimensional Euclidean '-spaces. For lower dimensions or , it c ...
.


Real numbers and topological properties

The rationals are a
dense subset In topology and related areas of mathematics, a subset ''A'' of a topological space ''X'' is said to be dense in ''X'' if every point of ''X'' either belongs to ''A'' or else is arbitrarily "close" to a member of ''A'' — for instance, the ra ...
of the
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
; every real number has rational numbers arbitrarily close to it. A related property is that rational numbers are the only numbers with
finite Finite may refer to: * Finite set, a set whose cardinality (number of elements) is some natural number * Finite verb, a verb form that has a subject, usually being inflected or marked for person and/or tense or aspect * "Finite", a song by Sara Gr ...
expansions as regular continued fractions. In the usual
topology Topology (from the Greek language, Greek words , and ) is the branch of mathematics concerned with the properties of a Mathematical object, geometric object that are preserved under Continuous function, continuous Deformation theory, deformat ...
of the real numbers, the rationals are neither an
open set In mathematics, an open set is a generalization of an Interval (mathematics)#Definitions_and_terminology, open interval in the real line. In a metric space (a Set (mathematics), set with a metric (mathematics), distance defined between every two ...
nor a
closed set In geometry, topology, and related branches of mathematics, a closed set is a Set (mathematics), set whose complement (set theory), complement is an open set. In a topological space, a closed set can be defined as a set which contains all its lim ...
. By virtue of their order, the rationals carry an
order topology In mathematics, an order topology is a specific topology that can be defined on any totally ordered set. It is a natural generalization of the topology of the real numbers to arbitrary totally ordered sets. If ''X'' is a totally ordered set, ...
. The rational numbers, as a subspace of the real numbers, also carry a
subspace topology In topology and related areas of mathematics, a subspace of a topological space (''X'', ''𝜏'') is a subset ''S'' of ''X'' which is equipped with a topology induced from that of ''𝜏'' called the subspace topology (or the relative topology ...
. The rational numbers form a
metric space In mathematics, a metric space is a Set (mathematics), set together with a notion of ''distance'' between its Element (mathematics), elements, usually called point (geometry), points. The distance is measured by a function (mathematics), functi ...
by using the
absolute difference The absolute difference of two real numbers x and y is given by , x-y, , the absolute value of their difference. It describes the distance on the real line between the points corresponding to x and y, and is a special case of the Lp distance fo ...
metric d(x,y)=, x-y, , and this yields a third topology on All three topologies coincide and turn the rationals into a
topological field In mathematics, a field is a set on which addition, subtraction, multiplication, and division are defined and behave as the corresponding operations on rational and real numbers. A field is thus a fundamental algebraic structure which is widel ...
. The rational numbers are an important example of a space which is not
locally compact In topology and related branches of mathematics, a topological space is called locally compact if, roughly speaking, each small portion of the space looks like a small portion of a compact space. More precisely, it is a topological space in which e ...
. The rationals are characterized topologically as the unique
countable In mathematics, a Set (mathematics), set is countable if either it is finite set, finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function fro ...
metrizable space In topology and related areas of mathematics, a metrizable space is a topological space that is Homeomorphism, homeomorphic to a metric space. That is, a topological space (X, \tau) is said to be metrizable if there is a Metric (mathematics), metr ...
without
isolated point In mathematics, a point is called an isolated point of a subset (in a topological space ) if is an element of and there exists a neighborhood of that does not contain any other points of . This is equivalent to saying that the singleton i ...
s. The space is also
totally disconnected In topology and related branches of mathematics, a totally disconnected space is a topological space that has only singletons as connected subsets. In every topological space, the singletons (and, when it is considered connected, the empty set) ...
. The rational numbers do not form a
complete metric space In mathematical analysis, a metric space is called complete (or a Cauchy space) if every Cauchy sequence of points in has a limit that is also in . Intuitively, a space is complete if there are no "points missing" from it (inside or at the bou ...
, and the
real numbers In mathematics, a real number is a number that can be used to measurement, measure a continuous variable, continuous one-dimensional quantity such as a time, duration or temperature. Here, ''continuous'' means that pairs of values can have arbi ...
are the completion of under the metric d(x,y)=, x-y, above.


''p''-adic numbers

In addition to the absolute value metric mentioned above, there are other metrics which turn into a topological field: Let be a
prime number A prime number (or a prime) is a natural number greater than 1 that is not a Product (mathematics), product of two smaller natural numbers. A natural number greater than 1 that is not prime is called a composite number. For example, 5 is prime ...
and for any non-zero integer , let , a, _p = p^, where is the highest power of dividing . In addition set , 0, _p = 0. For any rational number we set :\left, \frac\_p = \frac. Then :d_p(x,y) =, x-y, _p defines a
metric Metric or metrical may refer to: Measuring * Metric system, an internationally adopted decimal system of measurement * An adjective indicating relation to measurement in general, or a noun describing a specific type of measurement Mathematics ...
on The metric space is not complete, and its completion is the -adic number field Ostrowski's theorem states that any non-trivial
absolute value In mathematics, the absolute value or modulus of a real number x, is the non-negative value without regard to its sign. Namely, , x, =x if x is a positive number, and , x, =-x if x is negative (in which case negating x makes -x positive), ...
on the rational numbers is equivalent to either the usual real absolute value or a -adic absolute value.


See also

*
Dyadic rational In mathematics, a dyadic rational or binary rational is a number that can be expressed as a fraction whose denominator is a power of two. For example, 1/2, 3/2, and 3/8 are dyadic rationals, but 1/3 is not. These numbers are important in computer ...
*
Floating point In computing, floating-point arithmetic (FP) is arithmetic on subsets of real numbers formed by a ''significand'' (a signed sequence of a fixed number of digits in some base) multiplied by an integer power of that base. Numbers of this form ...
* Ford circles *
Gaussian rational In mathematics, a Gaussian rational number is a complex number of the form ''p'' + ''qi'', where ''p'' and ''q'' are both rational numbers. The set of all Gaussian rationals forms the Gaussian rational field, denoted Q(''i''), obtained b ...
* Naive height—height of a rational number in lowest term * Niven's theorem * Rational data type


References


Notes


External links

*
"Rational Number" From MathWorld – A Wolfram Web Resource
{{Authority control Elementary mathematics Field (mathematics) Fractions (mathematics) Sets of real numbers