HOME

TheInfoList



OR:

In
molecular biology Molecular biology is the branch of biology that seeks to understand the molecular basis of biological activity in and between cells, including biomolecular synthesis, modification, mechanisms, and interactions. The study of chemical and physi ...
, mutagenesis is an important laboratory technique whereby DNA mutations are deliberately engineered to produce
libraries A library is a collection of materials, books or media that are accessible for use and not just for display purposes. A library provides physical (hard copies) or digital access (soft copies) materials, and may be a physical location or a vir ...
of mutant genes, proteins, strains of bacteria, or other
genetically modified organism A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with ...
s. The various constituents of a gene, as well as its regulatory elements and its gene products, may be mutated so that the functioning of a genetic locus, process, or product can be examined in detail. The mutation may produce mutant proteins with interesting properties or enhanced or novel functions that may be of commercial use. Mutant strains may also be produced that have practical application or allow the molecular basis of a particular cell function to be investigated. Many methods of mutagenesis exist today. Initially, the kind of mutations artificially induced in the laboratory were entirely random using mechanisms such as UV irradiation. Random mutagenesis cannot target specific regions or sequences of the genome; however, with the development of
site-directed mutagenesis Site-directed mutagenesis is a molecular biology method that is used to make specific and intentional mutating changes to the DNA sequence of a gene and any gene products. Also called site-specific mutagenesis or oligonucleotide-directed mutagenesi ...
, more specific changes can be made. Since 2013, development of the
CRISPR CRISPR () (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacte ...
/Cas9 technology, based on a prokaryotic viral defense system, has allowed for the
editing Editing is the process of selecting and preparing written, photographic, visual, audible, or cinematic material used by a person or an entity to convey a message or information. The editing process can involve correction, condensation, orga ...
or mutagenesis of a genome ''in vivo''. Site-directed mutagenesis has proved useful in situations that random mutagenesis is not. Other techniques of mutagenesis include combinatorial and insertional mutagenesis. Mutagenesis that is not random can be used to clone DNA, investigate the effects of mutagens, and engineer proteins. It also has medical applications such as helping immunocompromised patients, research and treatment of diseases including HIV and cancers, and curing of diseases such as
beta thalassemia Beta thalassemias (β thalassemias) are a group of inherited blood disorders. They are forms of thalassemia caused by reduced or absent synthesis of the beta chains of hemoglobin that result in variable outcomes ranging from severe anemia to cli ...
.


Random mutagenesis

Early approaches to mutagenesis relied on methods which produced entirely random mutations. In such methods, cells or organisms are exposed to
mutagen In genetics, a mutagen is a physical or chemical agent that permanently changes nucleic acid, genetic material, usually DNA, in an organism and thus increases the frequency of mutations above the natural background level. As many mutations can ca ...
s such as UV radiation or mutagenic chemicals, and mutants with desired characteristics are then selected. Hermann Muller discovered in 1927 that
X-ray An X-ray, or, much less commonly, X-radiation, is a penetrating form of high-energy electromagnetic radiation. Most X-rays have a wavelength ranging from 10  picometers to 10  nanometers, corresponding to frequencies in the range 30&nb ...
s can cause genetic mutations in
fruit flies Fruit fly may refer to: Organisms * Drosophilidae, a family of small flies, including: ** ''Drosophila'', the genus of small fruit flies and vinegar flies ** ''Drosophila melanogaster'' or common fruit fly ** ''Drosophila suzukii'' or Asian fruit ...
, and went on to use the mutants he created for his studies in
genetics Genetics is the study of genes, genetic variation, and heredity in organisms.Hartl D, Jones E (2005) It is an important branch in biology because heredity is vital to organisms' evolution. Gregor Mendel, a Moravian Augustinian friar wor ...
. For ''
Escherichia coli ''Escherichia coli'' (),Wells, J. C. (2000) Longman Pronunciation Dictionary. Harlow ngland Pearson Education Ltd. also known as ''E. coli'' (), is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus ''Escher ...
'', mutants may be selected first by exposure to UV radiation, then plated onto an agar medium. The colonies formed are then replica-plated, one in a rich medium, another in a minimal medium, and mutants that have specific nutritional requirements can then be identified by their inability to grow in the minimal medium. Similar procedures may be repeated with other types of cells and with different media for selection. A number of methods for generating random mutations in specific
protein Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, respo ...
s were later developed to
screen Screen or Screens may refer to: Arts * Screen printing (also called ''silkscreening''), a method of printing * Big screen, a nickname associated with the motion picture industry * Split screen (filmmaking), a film composition paradigm in which mul ...
for mutants with interesting or improved properties. These methods may involve the use of doped nucleotides in
oligonucleotide Oligonucleotides are short DNA or RNA molecules, oligomers, that have a wide range of applications in genetic testing, research, and forensics. Commonly made in the laboratory by solid-phase chemical synthesis, these small bits of nucleic acids c ...
synthesis, or conducting a PCR reaction in conditions that enhance misincorporation of nucleotides (error-prone PCR), for example by reducing the fidelity of replication or using nucleotide analogues. A variation of this method for integrating non-biased mutations in a gene is
sequence saturation mutagenesis Sequence saturation mutagenesis (SeSaM) is a chemo-enzymatic random mutagenesis method applied for the directed evolution of proteins and enzymes. It is one of the most common saturation mutagenesis techniques. In four PCR-based reaction steps, p ...
. PCR products which contain mutation(s) are then
cloned Cloning is the process of producing individual organisms with identical or virtually identical DNA, either by natural or artificial means. In nature, some organisms produce clones through asexual reproduction. In the field of biotechnology, c ...
into an
expression vector An expression vector, otherwise known as an expression construct, is usually a plasmid or virus designed for gene expression in cells. The vector is used to introduce a specific gene into a target cell, and can commandeer the cell's mechanism for ...
and the mutant proteins produced can then be characterised. In animal studies,
alkylating agent Alkylation is the transfer of an alkyl group from one molecule to another. The alkyl group may be transferred as an alkyl carbocation, a free radical, a carbanion, or a carbene (or their equivalents). Alkylating agents are reagents for effecting al ...
s such as ''N''-ethyl-''N''-nitrosourea (ENU) have been used to generate mutant mice.
Ethyl methanesulfonate Ethyl methanesulfonate (EMS) is a mutagenic, teratogenic, and carcinogenic organic compound with formula C3H8SO3. It produces random mutations in genetic material by nucleotide substitution; particularly through G:C to A:T transitions induced b ...
(EMS) is also often used to generate animal, plant, and virus mutants. In a
European Union The European Union (EU) is a supranational political and economic union of member states that are located primarily in Europe. The union has a total area of and an estimated total population of about 447million. The EU has often been des ...
law (as 2001/18 directive), this kind of mutagenesis may be used to produce
GMOs A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with ...
but the products are exempted from regulation: no labeling, no evaluation.


Site-directed mutagenesis

Prior to the development site-directed mutagenesis techniques, all mutations made were random, and scientists had to use selection for the desired phenotype to find the desired mutation. Random mutagenesis techniques has an advantage in terms of how many mutations can be produced; however, while random mutagenesis can produce a change in single nucleotides, it does not offer much control as to which nucleotide is being changed. Many researchers therefore seek to introduce selected changes to DNA in a precise, site-specific manner. Early attempts uses analogs of nucleotides and other chemicals were first used to generate localized
point mutation A point mutation is a genetic mutation where a single nucleotide base is changed, inserted or deleted from a DNA or RNA sequence of an organism's genome. Point mutations have a variety of effects on the downstream protein product—consequences ...
s. Such chemicals include
aminopurine 2-Aminopurine, a purine analog of guanine and adenine, is a fluorescent molecular marker used in nucleic acid research. It most commonly pairs with thymine as an adenine-analogue, but can also pair with cytosine as a guanine-analogue;. For this ...
, which induces an AT to GC transition, while nitrosoguanidine,
bisulfite The bisulfite ion (IUPAC-recommended nomenclature: hydrogensulfite) is the ion . Salts containing the ion are also known as "sulfite lyes". Sodium bisulfite is used interchangeably with sodium metabisulfite (Na2S2O5). Sodium metabisulfite disso ...
, and N4-hydroxycytidine may induce a GC to AT transition. These techniques allow specific mutations to be engineered into a protein; however, they are not flexible with respect to the kinds of mutants generated, nor are they as specific as later methods of site-directed mutagenesis and therefore have some degree of randomness. Other technologies such as cleavage of DNA at specific sites on the chromosome, addition of new nucleotides, and exchanging of base pairs it is now possible to decide where mutations can go. Current techniques for site-specific mutation originates from the primer extension technique developed in 1978. Such techniques commonly involve using pre-fabricated mutagenic oligonucleotides in a
primer Primer may refer to: Arts, entertainment, and media Films * ''Primer'' (film), a 2004 feature film written and directed by Shane Carruth * ''Primer'' (video), a documentary about the funk band Living Colour Literature * Primer (textbook), a t ...
extension reaction with
DNA polymerase A DNA polymerase is a member of a family of enzymes that catalyze the synthesis of DNA molecules from nucleoside triphosphates, the molecular precursors of DNA. These enzymes are essential for DNA replication and usually work in groups to create ...
. This methods allows for point mutation or deletion or insertion of small stretches of DNA at specific sites. Advances in methodology have made such mutagenesis now a relatively simple and efficient process. Newer and more efficient methods of site directed mutagenesis are being constantly developed. For example, a technique called "Seamless ligation cloning extract" (or SLiCE for short) allows for the cloning of certain sequences of DNA within the genome, and more than one DNA fragment can be inserted into the genome at once. Site directed mutagenesis allows the effect of specific mutation to be investigated. There are numerous uses; for example, it has been used to determine how susceptible certain species were to chemicals that are often used In labs. The experiment used site directed mutagenesis to mimic the expected mutations of the specific chemical. The mutation resulted in a change in specific amino acids and the effects of this mutation were analyzed. The site-directed approach may be done systematically in such techniques as
alanine scanning In molecular biology, alanine scanning is a site-directed mutagenesis technique used to determine the contribution of a specific residue to the stability or function of a given protein. Alanine is used because of its non-bulky, chemically inert, ...
mutagenesis, whereby residues are systematically mutated to
alanine Alanine (symbol Ala or A), or α-alanine, is an α-amino acid that is used in the biosynthesis of proteins. It contains an amine group and a carboxylic acid group, both attached to the central carbon atom which also carries a methyl group side c ...
in order to identify residues important to the structure or function of a protein. Another comprehensive approach is site
saturation mutagenesis Site saturation mutagenesis (SSM), or simply site saturation, is a random mutagenesis technique used in protein engineering, in which a single codon or set of codons is substituted with all possible amino acids at the position. There are many v ...
where one
codon The genetic code is the set of rules used by living cells to translate information encoded within genetic material ( DNA or RNA sequences of nucleotide triplets, or codons) into proteins. Translation is accomplished by the ribosome, which links ...
or a set of codons may be substituted with all possible
amino acid Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although hundreds of amino acids exist in nature, by far the most important are the alpha-amino acids, which comprise proteins. Only 22 alpha am ...
s at the specific positions.


Combinatorial mutagenesis

Combinatorial mutagenesis is a site-directed protein engineering technique whereby multiple mutants of a protein can be simultaneously engineered based on analysis of the effects of additive individual mutations. It provides a useful method to assess the combinatorial effect of a large number of mutations on protein function. Large numbers of mutants may be screened for a particular characteristic by combinatorial analysis. In this technique, multiple positions or short sequences along a DNA strand may be exhaustively modified to obtain a comprehensive library of mutant proteins. The rate of incidence of beneficial variants can be improved by different methods for constructing mutagenesis libraries. One approach to this technique is to extract and replace a portion of the DNA sequence with a library of sequences containing all possible combinations at the desired mutation site. The content of the inserted segment can include sequences of structural significance, immunogenic property, or enzymatic function. A segment may also be inserted randomly into the gene in order to assess structural or functional significance of a particular part of a protein.


Insertional mutagenesis

The insertion of one or more base pairs, resulting in DNA mutations, is also known as
insertional mutagenesis In molecular biology, insertional mutagenesis is the creation of mutations of DNA by addition of one or more base pairs. Such insertional mutations can occur naturally, mediated by viruses or transposons, or can be artificially created for researc ...
. Engineered mutations such as these can provide important information in cancer research, such as mechanistic insights into the development of the disease. Retroviruses and transposons are the chief instrumental tools in insertional mutagenesis. Retroviruses, such as the mouse mammory tumor virus and murine leukemia virus, can be used to identify genes involved in carcinogenesis and understand the biological pathways of specific cancers. Transposons, chromosomal segments that can undergo transposition, can be designed and applied to insertional mutagenesis as an instrument for cancer gene discovery. These chromosomal segments allow insertional mutagenesis to be applied to virtually any tissue of choice while also allowing for more comprehensive, unbiased depth in DNA sequencing. Researchers have found four mechanisms of insertional mutagenesis that can be used on humans. the first mechanism is called enhancer insertion. Enhancers boost transcription of a particular gene by interacting with a promoter of that gene. This particular mechanism was first used to help severely immunocompromised patients I need of bone marrow. Gammaretroviruses carrying enhancers were then inserted into patients. The second mechanism is referred to as promoter insertion. Promoters provide our cells with the specific sequences needed to begin translation. Promoter insertion has helped researchers learn more about the HIV virus. The third mechanism is gene inactivation. An example of gene inactivation is using insertional mutagenesis to insert a retrovirus that disrupts the genome of the T cell in leukemia patients and giving them a specific antigen called CAR allowing the T cells to target cancer cells. The final mechanisms is referred to as mRNA 3' end substitution. Our genes occasionally undergo point mutations causing beta-thalassemia that interrupts red blood cell function. To fix this problem the correct gene sequence for the red blood cells are introduced and a substitution is made.


Homologous recombination

Homologous recombination Homologous recombination is a type of genetic recombination in which genetic information is exchanged between two similar or identical molecules of double-stranded or single-stranded nucleic acids (usually DNA as in cellular organisms but may ...
can be used to produce specific mutation in an organism. Vector containing DNA sequence similar to the gene to be modified is introduced to the cell, and by a process of recombination replaces the target gene in the chromosome. This method can be used to introduce a mutation or knock out a gene, for example as used in the production of
knockout mice A knockout mouse, or knock-out mouse, is a genetically modified mouse (''Mus musculus'') in which researchers have inactivated, or "knocked out", an existing gene by replacing it or disrupting it with an artificial piece of DNA. They are importan ...
.


CRISPR

Since 2013, the development of
CRISPR CRISPR () (an acronym for clustered regularly interspaced short palindromic repeats) is a family of DNA sequences found in the genomes of prokaryotic organisms such as bacteria and archaea. These sequences are derived from DNA fragments of bacte ...
-Cas9 technology has allowed for the efficient introduction of different types of mutations into the genome of a wide variety of organisms. The method does not require a transposon insertion site, leaves no marker, and its efficiency and simplicity has made it the preferred method for
genome editing Genome editing, or genome engineering, or gene editing, is a type of genetic engineering in which DNA is inserted, deleted, modified or replaced in the genome of a living organism. Unlike early genetic engineering techniques that randomly inserts ...
.


Gene synthesis

As the cost of DNA oligonucleotide synthesis falls, artificial synthesis of a complete gene is now a viable method for introducing mutations into a gene. This method allows for extensive mutation at multiple sites, including the complete redesign of the codon usage of a gene to optimise it for a particular organism.


See also

*
Genetic engineering Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including t ...
*
Oncomouse The OncoMouse or Harvard mouse is a type of laboratory mouse (''Mus musculus'') that has been genetically modified using modifications designed by Philip Leder and Timothy A Stewart of Harvard University to carry a specific gene called an activ ...
*
Saturated mutagenesis Site saturation mutagenesis (SSM), or simply site saturation, is a random mutagenesis technique used in protein engineering, in which a single codon or set of codons is substituted with all possible amino acids at the position. There are many v ...
*
Directed evolution Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis (cre ...


References


External links

{{Library resources box , onlinebooks=no , by=no , lcheading=Mutagenesis , label=Mutagenesis Genetically modified organisms Molecular biology techniques