HOME

TheInfoList



OR:

In
probability theory Probability theory is the branch of mathematics concerned with probability. Although there are several different probability interpretations, probability theory treats the concept in a rigorous mathematical manner by expressing it through a set o ...
, random element is a generalization of the concept of
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
to more complicated spaces than the simple real line. The concept was introduced by who commented that the “development of probability theory and expansion of area of its applications have led to necessity to pass from schemes where (random) outcomes of experiments can be described by number or a finite set of numbers, to schemes where outcomes of experiments represent, for example, vectors,
function Function or functionality may refer to: Computing * Function key, a type of key on computer keyboards * Function model, a structured representation of processes in a system * Function object or functor or functionoid, a concept of object-oriente ...
s, processes,
field Field may refer to: Expanses of open ground * Field (agriculture), an area of land used for agricultural purposes * Airfield, an aerodrome that lacks the infrastructure of an airport * Battlefield * Lawn, an area of mowed grass * Meadow, a grass ...
s,
series Series may refer to: People with the name * Caroline Series (born 1951), English mathematician, daughter of George Series * George Series (1920–1995), English physicist Arts, entertainment, and media Music * Series, the ordered sets used in ...
, transformations, and also sets or collections of sets.” The modern-day usage of “random element” frequently assumes the space of values is a
topological vector space In mathematics, a topological vector space (also called a linear topological space and commonly abbreviated TVS or t.v.s.) is one of the basic structures investigated in functional analysis. A topological vector space is a vector space that is als ...
, often a Banach or
Hilbert space In mathematics, Hilbert spaces (named after David Hilbert) allow generalizing the methods of linear algebra and calculus from (finite-dimensional) Euclidean vector spaces to spaces that may be infinite-dimensional. Hilbert spaces arise natural ...
with a specified natural
sigma algebra Sigma (; uppercase Σ, lowercase σ, lowercase in word-final position ς; grc-gre, σίγμα) is the eighteenth letter of the Greek alphabet. In the system of Greek numerals, it has a value of 200. In general mathematics, uppercase Σ is used as ...
of subsets.


Definition

Let (\Omega, \mathcal, P) be a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
, and (E, \mathcal) a
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the ...
. A random element with values in ''E'' is a function which is (\mathcal, \mathcal)-
measurable In mathematics, the concept of a measure is a generalization and formalization of Geometry#Length, area, and volume, geometrical measures (length, area, volume) and other common notions, such as mass and probability of events. These seemingly ...
. That is, a function X such that for any B\in \mathcal, the
preimage In mathematics, the image of a function is the set of all output values it may produce. More generally, evaluating a given function f at each element of a given subset A of its domain produces a set, called the "image of A under (or through) ...
of B lies in \mathcal. Sometimes random elements with values in E are called E-valued random variables. Note if (E, \mathcal)=(\mathbb, \mathcal(\mathbb)), where \mathbb are the real numbers, and \mathcal(\mathbb) is its
Borel σ-algebra In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are nam ...
, then the definition of random element is the classical definition of
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
. The definition of a random element X with values in a
Banach space In mathematics, more specifically in functional analysis, a Banach space (pronounced ) is a complete normed vector space. Thus, a Banach space is a vector space with a metric that allows the computation of vector length and distance between vector ...
B is typically understood to utilize the smallest \sigma-algebra on ''B'' for which every
bounded linear functional In functional analysis and operator theory, a bounded linear operator is a linear transformation L : X \to Y between topological vector spaces (TVSs) X and Y that maps bounded subsets of X to bounded subsets of Y. If X and Y are normed vector s ...
is measurable. An equivalent definition, in this case, to the above, is that a map X: \Omega \rightarrow B, from a probability space, is a random element if f \circ X is a random variable for every bounded linear functional ''f'', or, equivalently, that X is weakly measurable.


Examples of random elements


Random variable

A ''random variable'' is the simplest type of random element. It is a map X\colon \Omega \to \mathbb is a
measurable function In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in di ...
from the set of possible outcomes \Omega to \mathbb. As a real-valued function, X often describes some numerical quantity of a given event. E.g. the number of heads after a certain number of coin flips; the heights of different people. When the
image An image is a visual representation of something. It can be two-dimensional, three-dimensional, or somehow otherwise feed into the visual system to convey information. An image can be an artifact, such as a photograph or other two-dimensiona ...
(or range) of X is finite or
countably infinite In mathematics, a set is countable if either it is finite or it can be made in one to one correspondence with the set of natural numbers. Equivalently, a set is ''countable'' if there exists an injective function from it into the natural numbers; ...
, the random variable is called a discrete random variable and its distribution can be described by a
probability mass function In probability and statistics, a probability mass function is a function that gives the probability that a discrete random variable is exactly equal to some value. Sometimes it is also known as the discrete density function. The probability mass ...
which assigns a probability to each value in the image of X. If the image is uncountably infinite then X is called a continuous random variable. In the special case that it is
absolutely continuous In calculus, absolute continuity is a smoothness property of functions that is stronger than continuity and uniform continuity. The notion of absolute continuity allows one to obtain generalizations of the relationship between the two central ope ...
, its distribution can be described by a
probability density function In probability theory, a probability density function (PDF), or density of a continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can ...
, which assigns probabilities to intervals; in particular, each individual point must necessarily have probability zero for an absolutely continuous random variable. Not all continuous random variables are absolutely continuous, for example a
mixture distribution In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection a ...
. Such random variables cannot be described by a probability density or a probability mass function.


Random vector

A random vector is a
column A column or pillar in architecture and structural engineering is a structural element that transmits, through compression, the weight of the structure above to other structural elements below. In other words, a column is a compression member. ...
vector Vector most often refers to: *Euclidean vector, a quantity with a magnitude and a direction *Vector (epidemiology), an agent that carries and transmits an infectious pathogen into another living organism Vector may also refer to: Mathematic ...
\mathbf=(X_1,...,X_n)^T (or its
transpose In linear algebra, the transpose of a matrix is an operator which flips a matrix over its diagonal; that is, it switches the row and column indices of the matrix by producing another matrix, often denoted by (among other notations). The tr ...
, which is a
row vector In linear algebra, a column vector with m elements is an m \times 1 matrix consisting of a single column of m entries, for example, \boldsymbol = \begin x_1 \\ x_2 \\ \vdots \\ x_m \end. Similarly, a row vector is a 1 \times n matrix for some n, c ...
) whose components are
scalar Scalar may refer to: *Scalar (mathematics), an element of a field, which is used to define a vector space, usually the field of real numbers * Scalar (physics), a physical quantity that can be described by a single element of a number field such ...
-valued
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s on the same
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
(\Omega, \mathcal, P), where \Omega is the
sample space In probability theory, the sample space (also called sample description space, possibility space, or outcome space) of an experiment or random trial is the set of all possible outcomes or results of that experiment. A sample space is usually den ...
, \mathcal is the sigma-algebra (the collection of all events), and P is the
probability measure In mathematics, a probability measure is a real-valued function defined on a set of events in a probability space that satisfies measure properties such as ''countable additivity''. The difference between a probability measure and the more gener ...
(a function returning each event's
probability Probability is the branch of mathematics concerning numerical descriptions of how likely an Event (probability theory), event is to occur, or how likely it is that a proposition is true. The probability of an event is a number between 0 and ...
). Random vectors are often used as the underlying implementation of various types of aggregate
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s, e.g. a
random matrix In probability theory and mathematical physics, a random matrix is a matrix-valued random variable—that is, a matrix in which some or all elements are random variables. Many important properties of physical systems can be represented mathemat ...
,
random tree In mathematics and computer science, a random tree is a tree or arborescence that is formed by a stochastic process. Types of random trees include: *Uniform spanning tree, a spanning tree of a given graph in which each different tree is equally ...
,
random sequence The concept of a random sequence is essential in probability theory and statistics. The concept generally relies on the notion of a sequence of random variables and many statistical discussions begin with the words "let ''X''1,...,''Xn'' be independ ...
,
random process In probability theory and related fields, a stochastic () or random process is a mathematical object usually defined as a family of random variables. Stochastic processes are widely used as mathematical models of systems and phenomena that appe ...
, etc.


Random matrix

A random matrix is a
matrix Matrix most commonly refers to: * ''The Matrix'' (franchise), an American media franchise ** ''The Matrix'', a 1999 science-fiction action film ** "The Matrix", a fictional setting, a virtual reality environment, within ''The Matrix'' (franchis ...
-valued random element. Many important properties of
physical system A physical system is a collection of physical objects. In physics, it is a portion of the physical universe chosen for analysis. Everything outside the system is known as the environment. The environment is ignored except for its effects on the ...
s can be represented mathematically as matrix problems. For example, the
thermal conductivity The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by k, \lambda, or \kappa. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal ...
of a
lattice Lattice may refer to: Arts and design * Latticework, an ornamental criss-crossed framework, an arrangement of crossing laths or other thin strips of material * Lattice (music), an organized grid model of pitch ratios * Lattice (pastry), an orna ...
can be computed from the dynamical matrix of the particle-particle interactions within the lattice.


Random function

A random function is a type of random element in which a single outcome is selected from some family of functions, where the family consists some class of all maps from the
domain Domain may refer to: Mathematics *Domain of a function, the set of input values for which the (total) function is defined **Domain of definition of a partial function **Natural domain of a partial function **Domain of holomorphy of a function * Do ...
to the
codomain In mathematics, the codomain or set of destination of a function is the set into which all of the output of the function is constrained to fall. It is the set in the notation . The term range is sometimes ambiguously used to refer to either the ...
. For example, the class may be restricted to all
continuous function In mathematics, a continuous function is a function such that a continuous variation (that is a change without jump) of the argument induces a continuous variation of the value of the function. This means that there are no abrupt changes in value ...
s or to all
step function In mathematics, a function on the real numbers is called a step function if it can be written as a finite linear combination of indicator functions of intervals. Informally speaking, a step function is a piecewise constant function having only ...
s. The values determined by a random function evaluated at different points from the same realization would not generally be
statistically independent Independence is a fundamental notion in probability theory, as in statistics and the theory of stochastic processes. Two events are independent, statistically independent, or stochastically independent if, informally speaking, the occurrence of o ...
but, depending on the model, values determined at the same or different points from different realisations might well be treated as independent.


Random process

A Random process is a collection of
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s, representing the evolution of some system of random values over time. This is the probabilistic counterpart to a deterministic process (or
deterministic system In mathematics, computer science and physics, a deterministic system is a system in which no randomness is involved in the development of future states of the system. A deterministic model will thus always produce the same output from a given star ...
). Instead of describing a process which can only evolve in one way (as in the case, for example, of solutions of an
ordinary differential equation In mathematics, an ordinary differential equation (ODE) is a differential equation whose unknown(s) consists of one (or more) function(s) of one variable and involves the derivatives of those functions. The term ''ordinary'' is used in contrast w ...
), in a stochastic or random process there is some indeterminacy: even if the initial condition (or starting point) is known, there are several (often infinitely many) directions in which the process may evolve. In the simple case of
discrete time In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "po ...
, as opposed to
continuous time In mathematical dynamics, discrete time and continuous time are two alternative frameworks within which variables that evolve over time are modeled. Discrete time Discrete time views values of variables as occurring at distinct, separate "po ...
, a stochastic process involves a
sequence In mathematics, a sequence is an enumerated collection of objects in which repetitions are allowed and order matters. Like a set, it contains members (also called ''elements'', or ''terms''). The number of elements (possibly infinite) is calle ...
of random variables and the
time series In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Exa ...
associated with these random variables (for example, see
Markov chain A Markov chain or Markov process is a stochastic model describing a sequence of possible events in which the probability of each event depends only on the state attained in the previous event. Informally, this may be thought of as, "What happe ...
, also known as discrete-time Markov chain).


Random field

Given a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
(\Omega, \mathcal, P) and a
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the ...
X, an ''X''-valued random field is a collection of ''X''-valued
random variable A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. It is a mapping or a function from possible outcomes (e.g., the po ...
s indexed by elements in a topological space ''T''. That is, a random field ''F'' is a collection : \ where each F_t is an ''X''-valued random variable. Several kinds of random fields exist, among them the
Markov random field In the domain of physics and probability, a Markov random field (MRF), Markov network or undirected graphical model is a set of random variables having a Markov property described by an undirected graph. In other words, a random field is said to b ...
(MRF),
Gibbs random field In mathematics, the Gibbs measure, named after Josiah Willard Gibbs, is a probability measure frequently seen in many problems of probability theory and statistical mechanics. It is a generalization of the canonical ensemble to infinite systems. ...
(GRF),
conditional random field Conditional random fields (CRFs) are a class of statistical modeling methods often applied in pattern recognition and machine learning and used for structured prediction. Whereas a classifier predicts a label for a single sample without consid ...
(CRF), and
Gaussian random field A Gaussian random field (GRF) within statistics, is a random field involving Gaussian probability density functions of the variables. A one-dimensional GRF is also called a Gaussian process. An important special case of a GRF is the Gaussian fre ...
. An MRF exhibits the Markovian property : P(X_i=x_i, X_j=x_j, i\neq j) =P(X_i=x_i, \partial_i), \, where \partial_i is a set of neighbours of the random variable ''X''''i''. In other words, the probability that a random variable assumes a value depends on the other random variables only through the ones that are its immediate neighbours. The probability of a random variable in an MRF is given by : P(X_i=x_i, \partial_i) = \frac, where Ω' is the same realization of Ω, except for random variable ''X''''i''. It is difficult to calculate with this equation, without recourse to the relation between MRFs and GRFs proposed by
Julian Besag Julian Ernst Besag FRS (26 March 1945 – 6 August 2010) was a British statistician known chiefly for his work in spatial statistics (including its applications to epidemiology, image analysis and agricultural science), and Bayesian inferenc ...
in 1974.


Random measure

A random measure is a
measure Measure may refer to: * Measurement, the assignment of a number to a characteristic of an object or event Law * Ballot measure, proposed legislation in the United States * Church of England Measure, legislation of the Church of England * Mea ...
-valued random element. Kallenberg, O., ''Random Measures'', 4th edition. Academic Press, New York, London; Akademie-Verlag, Berlin (1986). . An authoritative but rather difficult reference. Jan Grandell, Point processes and random measures, ''Advances in Applied Probability'' 9 (1977) 502-526.
JSTOR
A nice and clear introduction.
Let X be a complete separable metric space and \mathfrak(X) the
σ-algebra In mathematical analysis and in probability theory, a σ-algebra (also σ-field) on a set ''X'' is a collection Σ of subsets of ''X'' that includes the empty subset, is closed under complement, and is closed under countable unions and countabl ...
of its Borel sets. A Borel measure μ on X is boundedly finite if μ(A) < ∞ for every bounded Borel set A. Let M_X be the space of all boundedly finite measures on \mathfrak(X). Let be a
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
, then a random measure maps from this probability space to the
measurable space In mathematics, a measurable space or Borel space is a basic object in measure theory. It consists of a set and a σ-algebra, which defines the subsets that will be measured. Definition Consider a set X and a σ-algebra \mathcal A on X. Then the ...
. A measure generally might be decomposed as: : \mu=\mu_d + \mu_a = \mu_d + \sum_^N \kappa_n \delta_, Here \mu_d is a diffuse measure without atoms, while \mu_a is a purely atomic measure.


Random set

A random set is a set-valued random element. One specific example is a
random compact set In mathematics, a random compact set is essentially a compact set-valued random variable. Random compact sets are useful in the study of attractors for random dynamical systems. Definition Let (M, d) be a complete separable metric space. Let \mat ...
. Let (M, d) be a
complete Complete may refer to: Logic * Completeness (logic) * Completeness of a theory, the property of a theory that every formula in the theory's language or its negation is provable Mathematics * The completeness of the real numbers, which implies t ...
separable
metric space In mathematics, a metric space is a set together with a notion of ''distance'' between its elements, usually called points. The distance is measured by a function called a metric or distance function. Metric spaces are the most general settin ...
. Let \mathcal denote the set of all compact subsets of M. The Hausdorff metric h on \mathcal is defined by :h(K_, K_) := \max \left\. (\mathcal, h) is also а complete separable metric space. The corresponding open subsets generate a σ-algebra on \mathcal, the
Borel sigma algebra In mathematics, a Borel set is any set in a topological space that can be formed from open sets (or, equivalently, from closed sets) through the operations of countable union, countable intersection, and relative complement. Borel sets are named ...
\mathcal(\mathcal) of \mathcal. A random compact set is а
measurable function In mathematics and in particular measure theory, a measurable function is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in di ...
K from а
probability space In probability theory, a probability space or a probability triple (\Omega, \mathcal, P) is a mathematical construct that provides a formal model of a random process or "experiment". For example, one can define a probability space which models t ...
(\Omega, \mathcal, \mathbb) into (\mathcal, \mathcal (\mathcal) ). Put another way, a random compact set is a measurable function K \colon \Omega \to 2^ such that K(\omega) is
almost surely In probability theory, an event is said to happen almost surely (sometimes abbreviated as a.s.) if it happens with probability 1 (or Lebesgue measure 1). In other words, the set of possible exceptions may be non-empty, but it has probability 0. ...
compact and :\omega \mapsto \inf_ d(x, b) is a measurable function for every x \in M.


Random geometric objects

These include random points, random figures,Stoyan, D., and Stoyan, H. (1994) ''Fractals, Random Shapes and Point Fields. Methods of Geometrical Statistics''. Chichester, New York: John Wiley & Sons. and random shapes.


References


Literature

* Hoffman-Jorgensen J., Pisier G. (1976) "Ann.Probab.", v.4, 587–589. * Mourier E. (1955) Elements aleatoires dans un espace de Banach (These). Paris. * Prokhorov Yu.V. (1999) Random element. Probability and Mathematical statistics. Encyclopedia. Moscow: "Great Russian Encyclopedia", P.623. {{refend


External links


Entry in Springer Encyclopedia of Mathematics
Statistical randomness