Radiotelescope RTF32 Zelenchuk
   HOME

TheInfoList



OR:

A radio telescope is a specialized
antenna Antenna ( antennas or antennae) may refer to: Science and engineering * Antenna (radio), also known as an aerial, a transducer designed to transmit or receive electromagnetic (e.g., TV or radio) waves * Antennae Galaxies, the name of two collid ...
and
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
used to detect
radio wave Radio waves are a type of electromagnetic radiation with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz (GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (short ...
s from astronomical radio sources in the sky. Radio telescopes are the main observing instrument used in radio astronomy, which studies the radio frequency portion of the electromagnetic spectrum emitted by astronomical objects, just as optical telescopes are the main observing instrument used in traditional
optical astronomy Visible-light astronomy encompasses a wide variety of observations via telescopes that are sensitive in the range of visible light (optical telescopes). Visible-light astronomy is part of optical astronomy, and differs from astronomies based on in ...
which studies the
light wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible) ligh ...
portion of the spectrum coming from astronomical objects. Unlike optical telescopes, radio telescopes can be used in the daytime as well as at night. Since astronomical radio sources such as planets,
star A star is an astronomical object comprising a luminous spheroid of plasma (physics), plasma held together by its gravity. The List of nearest stars and brown dwarfs, nearest star to Earth is the Sun. Many other stars are visible to the naked ...
s,
nebula A nebula ('cloud' or 'fog' in Latin; pl. nebulae, nebulæ or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regio ...
s and
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
are very far away, the radio waves coming from them are extremely weak, so radio telescopes require very large antennas to collect enough radio energy to study them, and extremely sensitive receiving equipment. Radio telescopes are typically large parabolic ("dish") antennas similar to those employed in tracking and communicating with satellites and space probes. They may be used singly or linked together electronically in an array. Radio observatories are preferentially located far from major centers of population to avoid
electromagnetic interference Electromagnetic interference (EMI), also called radio-frequency interference (RFI) when in the radio frequency spectrum, is a disturbance generated by an external source that affects an electrical circuit by electromagnetic induction, electros ...
(EMI) from radio, television, radar, motor vehicles, and other man-made electronic devices. Radio waves from space were first detected by engineer Karl Guthe Jansky in 1932 at Bell Telephone Laboratories in Holmdel, New Jersey using an antenna built to study radio receiver noise. The first purpose-built radio telescope was a 9-meter parabolic dish constructed by radio amateur Grote Reber in his back yard in Wheaton, Illinois in 1937. The sky survey he performed is often considered the beginning of the field of radio astronomy.


Early radio telescopes

The first radio antenna used to identify an astronomical radio source was built by Karl Guthe Jansky, an engineer with Bell Telephone Laboratories, in 1932. Jansky was assigned the task of identifying sources of static that might interfere with
radiotelephone A radiotelephone (or radiophone), abbreviated RT, is a radio communication system for conducting a conversation; radiotelephony means telephony by radio. It is in contrast to '' radiotelegraphy'', which is radio transmission of telegrams (mes ...
service. Jansky's antenna was an array of dipoles and reflectors designed to receive
short wave Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the High frequency, high frequency band (HF), which extends from 3 to 30 MHz (10 ...
radio signals at a frequency of 20.5 MHz (wavelength about 14.6 meters). It was mounted on a turntable that allowed it to rotate in any direction, earning it the name "Jansky's merry-go-round." It had a diameter of approximately and stood tall. By rotating the antenna, the direction of the received interfering radio source (static) could be pinpointed. A small shed to the side of the antenna housed an
analog Analog or analogue may refer to: Computing and electronics * Analog signal, in which information is encoded in a continuous variable ** Analog device, an apparatus that operates on analog signals *** Analog electronics, circuits which use analo ...
pen-and-paper recording system. After recording signals from all directions for several months, Jansky eventually categorized them into three types of static: nearby thunderstorms, distant thunderstorms, and a faint steady hiss above
shot noise Shot noise or Poisson noise is a type of noise which can be modeled by a Poisson process. In electronics shot noise originates from the discrete nature of electric charge. Shot noise also occurs in photon counting in optical devices, where shot ...
, of unknown origin. Jansky finally determined that the "faint hiss" repeated on a cycle of 23 hours and 56 minutes. This period is the length of an astronomical sidereal day, the time it takes any "fixed" object located on the
celestial sphere In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, ...
to come back to the same location in the sky. Thus Jansky suspected that the hiss originated outside of the Solar System, and by comparing his observations with optical astronomical maps, Jansky concluded that the radiation was coming from the Milky Way Galaxy and was strongest in the direction of the center of the galaxy, in the
constellation A constellation is an area on the celestial sphere in which a group of visible stars forms Asterism (astronomy), a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object. The origins of the e ...
of Sagittarius. An amateur radio operator, Grote Reber, was one of the pioneers of what became known as radio astronomy. He built the first parabolic "dish" radio telescope, in diameter, in his back yard in Wheaton, Illinois in 1937. He repeated Jansky's pioneering work, identifying the Milky Way as the first off-world radio source, and he went on to conduct the first sky survey at very high radio frequencies, discovering other radio sources. The rapid development of radar during World War II created technology which was applied to radio astronomy after the war, and radio astronomy became a branch of astronomy, with universities and research institutes constructing large radio telescopes.


Types

The range of frequencies in the electromagnetic spectrum that makes up the radio spectrum is very large. As a consequence, the types of antennas that are used as radio telescopes vary widely in design, size, and configuration. At wavelengths of 30 meters to 3 meters (10–100 MHz), they are generally either
directional antenna A directional antenna or beam antenna is an antenna which radiates or receives greater power in specific directions allowing increased performance and reduced interference from unwanted sources. Directional antennas provide increased performance ...
arrays similar to "TV antennas" or large stationary reflectors with moveable focal points. Since the wavelengths being observed with these types of antennas are so long, the "reflector" surfaces can be constructed from coarse wire mesh such as chicken wire. At shorter wavelengths parabolic "dish" antennas predominate. The
angular resolution Angular resolution describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object, thereby making it a major determinant of image resolution. ...
of a dish antenna is determined by the ratio of the diameter of the dish to the wavelength of the radio waves being observed. This dictates the dish size a radio telescope needs for a useful resolution. Radio telescopes that operate at wavelengths of 3 meters to 30 cm (100 MHz to 1 GHz) are usually well over 100 meters in diameter. Telescopes working at wavelengths shorter than 30 cm (above 1 GHz) range in size from 3 to 90 meters in diameter.


Frequencies

The increasing use of radio frequencies for communication makes astronomical observations more and more difficult (see
Open spectrum Open spectrum (also known as free spectrum) is a movement to get the Federal Communications Commission to provide more unlicensed radio-frequency spectrum that is available for use by all. Proponents of the "commons model" of open spectrum advocat ...
). Negotiations to defend the frequency allocation for parts of the spectrum most useful for observing the universe are coordinated in the Scientific Committee on Frequency Allocations for Radio Astronomy and Space Science. Some of the more notable frequency bands used by radio telescopes include: * Every frequency in the United States National Radio Quiet Zone * Channel 37: 608 to 614 MHz * The " Hydrogen line", also known as the "21 centimeter line": 1,420.40575177 MHz, used by many radio telescopes including
The Big Ear The Ohio State University Radio Observatory was a Kraus-type (after its inventor John D. Kraus) radio telescope located on the grounds of the Perkins Observatory at Ohio Wesleyan University in Delaware, Ohio from 1963 to 1998. Known as Big Ear, th ...
in its discovery of the Wow! signal * 1,406 MHz and 430 MHz * The
Waterhole A waterhole is a depression in the ground in which water can collect, or a more permanent pool in the bed of an ephemeral river. Waterhole or water hole may refer to: * Water hole (radio), an especially quiet region of the electromagnetic spect ...
: 1,420 to 1,666 MHz * The
Arecibo Observatory The Arecibo Observatory, also known as the National Astronomy and Ionosphere Center (NAIC) and formerly known as the Arecibo Ionosphere Observatory, is an observatory in Barrio Esperanza, Arecibo, Puerto Rico owned by the US National Science F ...
had several receivers that together covered the whole 1–10 GHz range. * The
Wilkinson Microwave Anisotropy Probe The Wilkinson Microwave Anisotropy Probe (WMAP), originally known as the Microwave Anisotropy Probe (MAP and Explorer 80), was a NASA spacecraft operating from 2001 to 2010 which measured temperature differences across the sky in the cosmic mic ...
mapped the Cosmic microwave background radiation in 5 different frequency bands, centered on 23 GHz, 33 GHz, 41 GHz, 61 GHz, and 94 GHz.


Big dishes

The world's largest filled-aperture (i.e. full dish) radio telescope is the Five-hundred-meter Aperture Spherical Telescope (FAST) completed in 2016 by
China China, officially the People's Republic of China (PRC), is a country in East Asia. It is the world's most populous country, with a population exceeding 1.4 billion, slightly ahead of India. China spans the equivalent of five time zones and ...
. The dish with an area as large as 30 football fields is built into a natural
karst Karst is a topography formed from the dissolution of soluble rocks such as limestone, dolomite, and gypsum. It is characterized by underground drainage systems with sinkholes and caves. It has also been documented for more weathering-resistant ro ...
depression in the landscape in Guizhou province and cannot move; the feed antenna is in a cabin suspended above the dish on cables. The active dish is composed of 4,450 moveable panels controlled by a computer. By changing the shape of the dish and moving the feed cabin on its cables, the telescope can be steered to point to any region of the sky up to 40° from the zenith. Although the dish is 500 meters in diameter, only a 300-meter circular area on the dish is illuminated by the feed antenna at any given time, so the actual effective aperture is 300 meters. Construction was begun in 2007 and completed July 2016 and the telescope became operational September 25, 2016. The world's second largest filled-aperture telescope was the Arecibo radio telescope located in
Arecibo, Puerto Rico Arecibo (; ) is a city and municipality on the northern coast of Puerto Rico, on the shores of the Atlantic Ocean, located north of Utuado and Ciales; east of Hatillo; and west of Barceloneta and Florida. It is about west of San Juan, the ...
, though it suffered catastrophic collapse on 1 December 2020. Arecibo was one of the world's few radio telescope also capable of active (i.e., transmitting) radar imaging of near-Earth objects (see: radar astronomy); most other telescopes employ passive detection, i.e., receiving only. Arecibo was another stationary dish telescope like FAST. Arecibo's dish was built into a natural depression in the landscape, the antenna was steerable within an angle of about 20° of the zenith by moving the suspended feed antenna, giving use of a 270-meter diameter portion of the dish for any individual observation. The largest individual radio telescope of any kind is the RATAN-600 located near
Nizhny Arkhyz Arkhyz (also Nizhny Arkhyz russian: Архыз; krc, Ырхыз, ''Irxız''; "mudflows") is a Types of inhabited localities in Russia, village in the valley of the Bolshoy Zelenchuk River, in the Republic of Karachay–Cherkessia, Greater Caucasu ...
, Russia, which consists of a 576-meter circle of rectangular radio reflectors, each of which can be pointed towards a central conical receiver. The above stationary dishes are not fully "steerable"; they can only be aimed at points in an area of the sky near the zenith, and cannot receive from sources near the horizon. The largest fully steerable dish radio telescope is the 100 meter Green Bank Telescope in West Virginia, United States, constructed in 2000. The largest fully steerable radio telescope in Europe is the Effelsberg 100-m Radio Telescope near Bonn, Germany, operated by the Max Planck Institute for Radio Astronomy, which also was the world's largest fully steerable telescope for 30 years until the Green Bank antenna was constructed. The third-largest fully steerable radio telescope is the 76-meter Lovell Telescope at Jodrell Bank Observatory in
Cheshire Cheshire ( ) is a ceremonial and historic county in North West England, bordered by Wales to the west, Merseyside and Greater Manchester to the north, Derbyshire to the east, and Staffordshire and Shropshire to the south. Cheshire's county t ...
, England, completed in 1957. The fourth-largest fully steerable radio telescopes are six 70-meter dishes: three Russian RT-70, and three in the NASA Deep Space Network. The planned Qitai Radio Telescope, at a diameter of , is expected to become the world's largest fully steerable single-dish radio telescope when completed in 2023. A more typical radio telescope has a single antenna of about 25 meters diameter. Dozens of radio telescopes of about this size are operated in radio observatories all over the world.


Gallery of big dishes

File:FastTelescope*8sep2015.jpg, alt=Five hundred meter Aperture Spherical Telescope under construction, The 500 meter Five hundred meter Aperture Spherical Telescope (FAST), under construction, China (2016) File:GBT.png, alt=Green Bank Telescope, The 100 meter Green Bank Telescope, Green Bank, West Virginia, US, the largest fully steerable radio telescope dish (2002) File:DSCN6149_Effelsberg_totale.jpg, alt=Effelsberg 100-m Radio Telescope, The 100 meter
Effelsberg The Effelsberg 100-m Radio Telescope is a radio telescope in the Ahr Hills (part of the Eifel) in Bad Münstereifel, Germany. For 29 years the Effelsberg Radio Telescope was the largest fully steerable radio telescope on Earth, surpassing the ...
, in Bad Münstereifel, Germany (1971) File:Lovell Telescope 5.jpg, alt=Lovell Telescope, The 76 meter Lovell, Jodrell Bank Observatory, England (1957) File:Goldstone DSN antenna.jpg, alt=DSS 14 "Mars" antenna at Goldstone Deep Space Communications Complex, The 70 meter DSS 14 "Mars" antenna at Goldstone Deep Space Communications Complex, Mojave Desert, California, US (1958) File:70-м антенна П-2500 (РТ-70).jpg, alt=Yevpatoria RT-70 radio telescope, The 70 meter Yevpatoria RT-70, Crimea, first of three RT-70 in the former Soviet Union, (1978) File:Антенна П-2500 (РТ-70) ВЦДКС - panoramio (2).jpg, The 70 meter Galenki RT-70, Galenki, Russia, second of three RT-70 in the former Soviet Union, (1984)


Radiotelescopes in space

Since 1965, humans have launched three space-based radio telescopes. The first one, KRT-10, was attached to Salyut 6 orbital space station in 1979. In 1997,
Japan Japan ( ja, 日本, or , and formally , ''Nihonkoku'') is an island country in East Asia. It is situated in the northwest Pacific Ocean, and is bordered on the west by the Sea of Japan, while extending from the Sea of Okhotsk in the north ...
sent the second, HALCA. The last one was sent by Russia in 2011 called Spektr-R.


Radio interferometry

One of the most notable developments came in 1946 with the introduction of the technique called astronomical interferometry, which means combining the signals from multiple antennas so that they simulate a larger antenna, in order to achieve greater resolution. Astronomical radio interferometers usually consist either of arrays of parabolic dishes (e.g., the One-Mile Telescope), arrays of one-dimensional antennas (e.g., the Molonglo Observatory Synthesis Telescope) or two-dimensional arrays of omnidirectional dipoles (e.g., Tony Hewish's Pulsar Array). All of the telescopes in the array are widely separated and are usually connected using
coaxial cable Coaxial cable, or coax (pronounced ) is a type of electrical cable consisting of an inner conductor surrounded by a concentric conducting shield, with the two separated by a dielectric ( insulating material); many coaxial cables also have a p ...
, waveguide, optical fiber, or other type of transmission line. Recent advances in the stability of electronic oscillators also now permit interferometry to be carried out by independent recording of the signals at the various antennas, and then later correlating the recordings at some central processing facility. This process is known as Very Long Baseline Interferometry (VLBI). Interferometry does increase the total signal collected, but its primary purpose is to vastly increase the resolution through a process called aperture synthesis. This technique works by superposing ( interfering) the signal waves from the different telescopes on the principle that waves that coincide with the same phase will add to each other while two waves that have opposite phases will cancel each other out. This creates a combined telescope that is equivalent in resolution (though not in sensitivity) to a single antenna whose diameter is equal to the spacing of the antennas furthest apart in the array. A high-quality image requires a large number of different separations between telescopes. Projected separation between any two telescopes, as seen from the radio source, is called a baseline. For example, the Very Large Array (VLA) near
Socorro, New Mexico Socorro (, '' sə-KOR-oh'') is a city in Socorro County in the U.S. state of New Mexico. It is in the Rio Grande Valley at an elevation of . In 2010 the population was 9,051. It is the county seat of Socorro County. Socorro is located south of A ...
has 27 telescopes with 351 independent baselines at once, which achieves a resolution of 0.2
arc seconds A minute of arc, arcminute (arcmin), arc minute, or minute arc, denoted by the symbol , is a unit of Angular unit, angular measurement equal to of one Degree (angle), degree. Since one degree is of a turn (geometry), turn (or complete rotat ...
at 3 cm wavelengths. Martin Ryle's group in Cambridge obtained a Nobel Prize for interferometry and aperture synthesis. The Lloyd's mirror interferometer was also developed independently in 1946 by
Joseph Pawsey Joseph Lade Pawsey (14 May 1908 – 30 November 1962) was an Australian scientist, radiophysicist and radio astronomer. Education Pawsey was born in Ararat, Victoria to a family of farmers. At the age of 14 he was awarded a government schol ...
's group at the University of Sydney. In the early 1950s, the Cambridge Interferometer mapped the radio sky to produce the famous 2C and 3C surveys of radio sources. An example of a large physically connected radio telescope array is the Giant Metrewave Radio Telescope, located in Pune, India. The largest array, the
Low-Frequency Array The Low-Frequency Array, or LOFAR, is a large radio telescope, with an antenna network located mainly in the Netherlands, and spreading across 7 other European countries as of 2019. Originally designed and built by ASTRON, the Netherlands Institu ...
(LOFAR), finished in 2012, is located in western Europe and consists of about 81,000 small antennas in 48 stations distributed over an area several hundreds of kilometers in diameter and operates between 1.25 and 30 m wavelengths. VLBI systems using post-observation processing have been constructed with antennas thousands of miles apart. Radio interferometers have also been used to obtain detailed images of the anisotropies and the polarization of the Cosmic Microwave Background, like the CBI interferometer in 2004. The world's largest physically connected telescope, the Square Kilometre Array (SKA), is planned to start operations in 2025.


Astronomical observations

Many astronomical objects are not only observable in visible light but also emit
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
at radio wavelengths. Besides observing energetic objects such as
pulsar A pulsar (from ''pulsating radio source'') is a highly magnetized rotating neutron star that emits beams of electromagnetic radiation out of its magnetic poles. This radiation can be observed only when a beam of emission is pointing toward Ea ...
s and
quasar A quasar is an extremely Luminosity, luminous active galactic nucleus (AGN). It is pronounced , and sometimes known as a quasi-stellar object, abbreviated QSO. This emission from a galaxy nucleus is powered by a supermassive black hole with a m ...
s, radio telescopes are able to "image" most astronomical objects such as
galaxies A galaxy is a system of stars, stellar remnants, interstellar gas, dust, dark matter, bound together by gravity. The word is derived from the Greek ' (), literally 'milky', a reference to the Milky Way galaxy that contains the Solar System. ...
,
nebula A nebula ('cloud' or 'fog' in Latin; pl. nebulae, nebulæ or nebulas) is a distinct luminescent part of interstellar medium, which can consist of ionized, neutral or molecular hydrogen and also cosmic dust. Nebulae are often star-forming regio ...
e, and even radio emissions from
planets A planet is a large, rounded astronomical body that is neither a star nor its remnant. The best available theory of planet formation is the nebular hypothesis, which posits that an interstellar cloud collapses out of a nebula to create a young ...
.


See also

* Aperture synthesis * Astropulse – distributed computing to search data tapes for primordial black holes, pulsars, and ETI * List of astronomical observatories * List of radio telescopes * List of telescope types *
Search for extraterrestrial intelligence The search for extraterrestrial intelligence (SETI) is a collective term for scientific searches for intelligent extraterrestrial life, for example, monitoring electromagnetic radiation for signs of transmissions from civilizations on other pl ...
* Telescope *
Radar telescope Radar astronomy is a technique of observing nearby astronomical objects by reflecting radio waves or microwaves off target objects and analyzing their reflections. Radar astronomy differs from ''radio astronomy'' in that the latter is a passive ob ...


References


Further reading

* Rohlfs, K., & Wilson, T. L. (2004). Tools of radio astronomy. Astronomy and astrophysics library. Berlin: Springer. * Asimov, I. (1979). Isaac Asimov's Book of facts; ''Sky Watchers''. New York: Grosset & Dunlap. pp. 390–399. {{DEFAULTSORT:Radio Telescope American inventions Astronomical imaging Astronomical instruments