Radiochemistry is the
chemistry
Chemistry is the science, scientific study of the properties and behavior of matter. It is a natural science that covers the Chemical element, elements that make up matter to the chemical compound, compounds made of atoms, molecules and ions ...
of
radioactive materials, where radioactive
isotopes of elements are used to study the properties and
chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being ''inactive'' as the isotopes are ''stable''). Much of radiochemistry deals with the use of
radioactivity to study ordinary
chemical reactions. This is very different from
radiation chemistry where the radiation levels are kept too low to influence the chemistry.
Radiochemistry includes the study of both natural and man-made radioisotopes.
Main decay modes
All radioisotopes are unstable
isotopes of
elements
Element or elements may refer to:
Science
* Chemical element, a pure substance of one type of atom
* Heating element, a device that generates heat by electrical resistance
* Orbital elements, parameters required to identify a specific orbit of ...
— that undergo
nuclear decay and emit some form of
radiation
In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes:
* ''electromagnetic radiation'', such as radio waves, microwaves, infrared, visi ...
. The radiation emitted can be of several types including
alpha
Alpha (uppercase , lowercase ; grc, ἄλφα, ''álpha'', or ell, άλφα, álfa) is the first letter of the Greek alphabet. In the system of Greek numerals, it has a value of one. Alpha is derived from the Phoenician letter aleph , whic ...
,
beta
Beta (, ; uppercase , lowercase , or cursive ; grc, βῆτα, bē̂ta or ell, βήτα, víta) is the second letter of the Greek alphabet. In the system of Greek numerals, it has a value of 2. In Modern Greek, it represents the voiced labiod ...
,
gamma radiation
A gamma ray, also known as gamma radiation (symbol γ or \gamma), is a penetrating form of electromagnetic radiation arising from the radioactive decay of atomic nuclei. It consists of the shortest wavelength electromagnetic waves, typically s ...
,
proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
, and
neutron emission along with
neutrino and
antiparticle emission decay pathways.
1.
α (alpha) radiation—the emission of an
alpha particle (which contains 2 protons and 2 neutrons) from an
atomic nucleus. When this occurs, the atom's
atomic mass will decrease by 4 units and the
atomic number will decrease by 2.
2.
β (beta) radiation—the
transmutation
Transmutation may refer to:
Pseudoscience and science Alchemy
*Chrysopoeia and argyropoeia, the turning of inexpensive metals, such as lead or copper, into gold and silver
* Magnum opus (alchemy), the creation of the philosopher's stone
* Menta ...
of a
neutron into an
electron and a
proton
A proton is a stable subatomic particle, symbol , H+, or 1H+ with a positive electric charge of +1 ''e'' elementary charge. Its mass is slightly less than that of a neutron and 1,836 times the mass of an electron (the proton–electron mass ...
. After this happens, the electron is emitted from the nucleus into the
electron cloud.
3.
γ (gamma) radiation—the emission of
electromagnetic energy (such as
gamma rays) from the nucleus of an atom. This usually occurs during alpha or beta
radioactive decay
Radioactive decay (also known as nuclear decay, radioactivity, radioactive disintegration, or nuclear disintegration) is the process by which an unstable atomic nucleus loses energy by radiation. A material containing unstable nuclei is consid ...
.
These three types of radiation can be distinguished by their difference in penetrating power.
Alpha can be stopped quite easily by a few centimetres of air or a piece of paper and is equivalent to a helium nucleus. Beta can be cut off by an aluminium sheet just a few millimetres thick and are electrons. Gamma is the most penetrating of the three and is a massless chargeless high-energy
photon. Gamma radiation requires an appreciable amount of heavy metal
radiation shielding (usually
lead or
barium
Barium is a chemical element with the symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element.
Th ...
-based) to reduce its intensity.
Activation analysis
By
neutron irradiation of objects, it is possible to induce radioactivity; this activation of stable isotopes to create radioisotopes is the basis of
neutron activation analysis
Neutron activation analysis (NAA) is the nuclear process used for determining the concentrations of elements in many materials. NAA allows discrete sampling of elements as it disregards the chemical form of a sample, and focuses solely on atomic ...
. A high-energy most interesting object which has been studied in this way is the hair of
Napoleon
Napoleon Bonaparte ; it, Napoleone Bonaparte, ; co, Napulione Buonaparte. (born Napoleone Buonaparte; 15 August 1769 – 5 May 1821), later known by his regnal name Napoleon I, was a French military commander and political leader who ...
's head, which has been examined for its
arsenic content.
A series of different experimental methods exist, these have been designed to enable the measurement of a range of different elements in different matrices. To reduce the effect of the
matrix it is common to use the chemical extraction of the wanted element ''and/or'' to allow the radioactivity due to the matrix elements to decay before the measurement of the radioactivity. Since the matrix effect can be corrected by observing the decay spectrum, little or no sample preparation is required for some samples, making neutron activation analysis less susceptible to contamination.
The effects of a series of different cooling times can be seen if a hypothetical sample that contains sodium, uranium, and cobalt in a 100:10:1 ratio was subjected to a very short pulse of
thermal neutrons. The initial radioactivity would be dominated by the
24Na activity (
half-life 15 h) but with increasing time the
239Np (half-life 2.4 d after formation from parent
239U with half-life 24 min) and finally the
60Co activity (5.3 yr) would predominate.
Biology applications
One biological application is the study of
DNA using radioactive
phosphorus-32. In these experiments, stable phosphorus is replaced by the chemically identical radioactive P-32, and the resulting radioactivity is used in the analysis of the molecules and their behaviour.
Another example is the work that was done on the methylation of elements such as
sulfur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
,
selenium,
tellurium, and
polonium by living organisms. It has been shown that
bacteria can convert these elements into volatile compounds, it is thought that
methylcobalamin (
vitamin B12) alkylates these elements to create the dimethyls. It has been shown that a combination of
Cobaloxime
Dimethylglyoxime is a chemical compound described by the formula CH3C(NOH)C(NOH)CH3. Its abbreviation is dmgH2 for neutral form, and dmgH− for anionic form, where H stands for hydrogen. This colourless solid is the dioxime derivative of the dike ...
and inorganic polonium in
sterile
Sterile or sterility may refer to:
*Asepsis, a state of being free from biological contaminants
* Sterile (archaeology), a sediment deposit which contains no evidence of human activity
*Sterilization (microbiology), any process that eliminates or ...
water forms a volatile polonium compound, while a control experiment that did not contain the
cobalt compound did not form the volatile polonium compound. For the
sulfur
Sulfur (or sulphur in British English) is a chemical element with the symbol S and atomic number 16. It is abundant, multivalent and nonmetallic. Under normal conditions, sulfur atoms form cyclic octatomic molecules with a chemical formula ...
work, the isotope
35S was used, while for polonium
207Po was used. In some related work by the addition of
57Co to the bacterial culture, followed by isolation of the cobalamin from the bacteria (and the measurement of the radioactivity of the isolated cobalamin) it was shown that the bacteria convert available cobalt into methylcobalamin.
In medicine PET (Positron Emission Tomography) scans are commonly used for diagnostic purposes in. A radiative tracer is injected intravenously into the patient and then taken to the PET machine. The radioactive tracer releases radiation outward from the patient and the cameras in the machine interpret the radiation rays from the tracer. PET scan machines use solid state scintillation detection because of their high detection efficiency, NaI(Tl) crystals absorb the tracer's radiation and produce photons that get converted into an electrical signal for the machine to analyze.
Environmental
Radiochemistry also includes the study of the behaviour of radioisotopes in the environment; for instance, a forest or grass fire can make radioisotopes mobile again. In these experiments, fires were started in the exclusion zone around
Chernobyl and the radioactivity in the air downwind was measured.
It is important to note that a vast number of processes can release radioactivity into the environment, for example, the action of
cosmic rays on the air is responsible for the formation of radioisotopes (such as
14C and
32P), the decay of
226Ra forms
222Rn which is a gas which can diffuse through rocks before entering buildings and dissolve in water and thus enter
drinking water In addition, human activities such as
bomb tests, accidents, and normal releases from industry have resulted in the release of radioactivity.
Chemical form of the actinides
The environmental chemistry of some radioactive elements such as plutonium is complicated by the fact that solutions of this element can undergo
disproportionation and as a result, many different oxidation states can coexist at once. Some work has been done on the identification of the oxidation state and coordination number of plutonium and the other actinides under different condition
This includes work on both solutions of relatively simple complexes and work on
colloids Two of the key matrixes are
soil/
rocks and
concrete, in these systems the chemical properties of plutonium have been studied using methods such as
EXAFS and
XANESbr>
http://www.lanl.gov/orgs/nmt/nmtdo/AQarchive/02spring/synchrotron.html]
Movement of colloids
While binding of a metal to the surfaces of the soil particles can prevent its movement through a layer of soil, it is possible for the particles of soil that bear the radioactive metal can migrate as colloidal particles through the soil. This has been shown to occur using soil particles labeled with
134Cs, these are able to move through cracks in the soil.
Normal background
Radioactivity is present everywhere (and has been since the formation of the earth). According to the
International Atomic Energy Agency
The International Atomic Energy Agency (IAEA) is an intergovernmental organization that seeks to promote the peaceful use of nuclear energy and to inhibit its use for any military purpose, including nuclear weapons. It was established in 1957 ...
, one kilogram of soil typically contains the following amounts of the following three natural radioisotopes 370 Bq
40K (typical range 100–700 Bq), 25 Bq
226Ra (typical range 10–50 Bq), 25 Bq
238U (typical range 10–50 Bq) and 25 Bq
232Th (typical range 7–50 Bq).
Action of microorganisms
The action of micro-organisms can fix uranium;
Thermoanaerobacter can use
chromium
Chromium is a chemical element with the symbol Cr and atomic number 24. It is the first element in group 6. It is a steely-grey, lustrous, hard, and brittle transition metal.
Chromium metal is valued for its high corrosion resistance and hardne ...
(VI),
iron(III),
cobalt(III),
manganese(IV), and uranium(VI) as electron acceptors while
acetate
An acetate is a salt (chemistry), salt formed by the combination of acetic acid with a base (e.g. Alkali metal, alkaline, Alkaline earth metal, earthy, Transition metal, metallic, nonmetallic or radical Radical (chemistry), base). "Acetate" als ...
,
glucose,
hydrogen,
lactate
Lactate may refer to:
* Lactation, the secretion of milk from the mammary glands
* Lactate, the conjugate base of lactic acid
Lactic acid is an organic acid. It has a molecular formula . It is white in the solid state and it is miscible with ...
,
pyruvate
Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate, the conjugate base, CH3COCOO−, is an intermediate in several metabolic pathways throughout the cell.
Pyruvic aci ...
,
succinate, and
xylose can act as electron donors for the metabolism of the bacteria. In this way, the metals can be reduced to form
magnetite (Fe
3O
4),
siderite (FeCO
3),
rhodochrosite (MnCO
3), and
uraninite (UO
2). Other researchers have also worked on the fixing of uranium using bacteri
http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371%2Fjournal.pbio.004028
Francis R. Livens ''et al.'' (Working at
Manchester) have suggested that the reason why ''Geobacter sulfurreducens'' can reduce cations to
uranium dioxide is that the bacteria reduce the uranyl cations to which then undergoes disproportionation to form and UO
2. This reasoning was based (at least in part) on the observation that is not converted to an insoluble neptunium oxide by the bacteria.
Education
Despite the growing use of nuclear medicine, the potential expansion of nuclear power plants, and worries about protection against nuclear threats and the management of the nuclear waste generated in past decades, the number of students opting to specialize in nuclear and radiochemistry has decreased significantly over the past few decades. Now, with many experts in these fields approaching retirement age, action is needed to avoid a workforce gap in these critical fields, for example by building student interest in these careers, expanding the educational capacity of universities and colleges, and providing more specific on-the-job training.
Nuclear and Radiochemistry (NRC) is mostly being taught at the university level, usually first at the Master- and PhD-degree level. In Europe, substantial effort is being done to harmonize and prepare the NRC education for the industry's and society's future needs. This effort is being coordinated in projects funded by the Coordinated Action supported by the European Atomic Energy Community's 7th Framework Program: The CINCH-II project - Cooperation in education and training In Nuclear Chemistry.
References
External links
ACS radioelectrochemistry
{{Authority control
Nuclear chemistry
Radioactivity