HOME

TheInfoList



OR:

Radio waves are a type of
electromagnetic radiation In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
with the longest wavelengths in the electromagnetic spectrum, typically with frequencies of 300 gigahertz ( GHz) and below. At 300 GHz, the corresponding wavelength is 1 mm (shorter than a grain of rice); at 30 Hz the corresponding wavelength is (longer than the radius of the Earth). Like all electromagnetic waves, radio waves in a vacuum travel at the speed of light, and in the Earth's atmosphere at a close, but slightly lower speed. Radio waves are generated by charged particles undergoing
acceleration In mechanics, acceleration is the rate of change of the velocity of an object with respect to time. Accelerations are vector quantities (in that they have magnitude and direction). The orientation of an object's acceleration is given by ...
, such as time-varying electric currents. Naturally occurring radio waves are emitted by lightning and astronomical objects, and are part of the blackbody radiation emitted by all warm objects. Radio waves are generated artificially by an electronic device called a transmitter, which is connected to an antenna which radiates the waves. They are received by another antenna connected to a
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
, which processes the received signal. Radio waves are very widely used in modern technology for fixed and mobile
radio communication Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmit ...
,
broadcasting Broadcasting is the distribution of audio or video content to a dispersed audience via any electronic mass communications medium, but typically one using the electromagnetic spectrum (radio waves), in a one-to-many model. Broadcasting began ...
,
radar Radar is a detection system that uses radio waves to determine the distance ('' ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
and radio navigation systems,
communications satellite A communications satellite is an artificial satellite that relays and amplifies radio telecommunication signals via a transponder; it creates a communication channel between a source transmitter and a receiver at different locations on Ear ...
s, wireless computer networks and many other applications. Different frequencies of radio waves have different propagation characteristics in the Earth's atmosphere; long waves can diffract around obstacles like mountains and follow the contour of the earth ( ground waves), shorter waves can reflect off the ionosphere and return to earth beyond the horizon (
skywave In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of ...
s), while much shorter wavelengths bend or diffract very little and travel on a line of sight, so their propagation distances are limited to the visual horizon. To prevent interference between different users, the artificial generation and use of radio waves is strictly regulated by law, coordinated by an international body called the
International Telecommunication Union The International Telecommunication Union is a specialized agency of the United Nations responsible for many matters related to information and communication technologies. It was established on 17 May 1865 as the International Telegraph Unio ...
(ITU), which defines radio waves as "
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
s of frequencies arbitrarily lower than 3,000 GHz, propagated in space without artificial guide". The radio spectrum is divided into a number of radio bands on the basis of frequency, allocated to different uses.


Discovery and exploitation

Radio waves were first predicted by the theory of electromagnetism proposed in 1867 by Scottish mathematical physicist
James Clerk Maxwell James Clerk Maxwell (13 June 1831 – 5 November 1879) was a Scottish mathematician and scientist responsible for the classical theory of electromagnetic radiation, which was the first theory to describe electricity, magnetism and ligh ...
. His mathematical theory, now called
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. Th ...
, predicted that a coupled electric and
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
could travel through space as an "
electromagnetic wave In physics, electromagnetic radiation (EMR) consists of waves of the electromagnetic (EM) field, which propagate through space and carry momentum and electromagnetic radiant energy. It includes radio waves, microwaves, infrared, (visible ...
". Maxwell proposed that light consisted of electromagnetic waves of very short wavelength. In 1887, German physicist Heinrich Hertz demonstrated the reality of Maxwell's electromagnetic waves by experimentally generating radio waves in his laboratory, showing that they exhibited the same wave properties as light:
standing wave In physics, a standing wave, also known as a stationary wave, is a wave that oscillates in time but whose peak amplitude profile does not move in space. The peak amplitude of the wave oscillations at any point in space is constant with respect ...
s, refraction, diffraction, and
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
. Italian inventor
Guglielmo Marconi Guglielmo Giovanni Maria Marconi, 1st Marquis of Marconi (; 25 April 187420 July 1937) was an Italian inventor and electrical engineer, known for his creation of a practical radio wave-based wireless telegraph system. This led to Marconi b ...
developed the first practical radio transmitters and receivers around 1894–1895. He received the 1909 Nobel Prize in physics for his radio work. Radio communication began to be used commercially around 1900. The modern term "''radio wave''" replaced the original name "''Hertzian wave''" around 1912.


Generation and reception

Radio waves are radiated by charged particles when they are accelerated. Natural sources of radio waves include radio noise produced by lightning and other natural processes in the Earth's atmosphere, and astronomical radio sources in space such as the Sun, galaxies and nebulas. All warm objects radiate high frequency radio waves (
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequency, frequencies between 300 MHz and 300 GHz respectively. Different sources define different fre ...
s) as part of their
black body radiation Black-body radiation is the thermal electromagnetic radiation within, or surrounding, a body in thermodynamic equilibrium with its environment, emitted by a black body (an idealized opaque, non-reflective body). It has a specific, continuous spect ...
. Radio waves are produced artificially by time-varying electric currents, consisting of electrons flowing back and forth in a specially-shaped metal conductor called an antenna. An electronic device called a radio transmitter applies oscillating electric current to the antenna, and the antenna radiates the power as radio waves. Radio waves are received by another antenna attached to a
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
. When radio waves strike the receiving antenna they push the electrons in the metal back and forth, creating tiny oscillating currents which are detected by the receiver. From
quantum mechanics Quantum mechanics is a fundamental theory in physics that provides a description of the physical properties of nature at the scale of atoms and subatomic particles. It is the foundation of all quantum physics including quantum chemistry, q ...
, like other electromagnetic radiation such as light, radio waves can alternatively be regarded as streams of uncharged elementary particles called ''
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
s''. In an antenna transmitting radio waves, the electrons in the antenna emit the energy in discrete packets called radio photons, while in a receiving antenna the electrons absorb the energy as radio photons. An antenna is a coherent emitter of photons, like a
laser A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The word "laser" is an acronym for "light amplification by stimulated emission of radiation". The firs ...
, so the radio photons are all in phase. However, from Planck's relation E = h\nu the energy of individual radio photons is extremely small, from 10−22 to 10−30  joules. It is so small that, except for certain molecular electron transition processes such as atoms in a maser emitting microwave photons, radio wave emission and absorption is usually regarded as a continuous classical process, governed by
Maxwell's equations Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, and electric circuits. Th ...
.


Properties

Radio waves in a vacuum travel at the speed of light c . When passing through a material medium, they are slowed depending on the medium's permeability and
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more i ...
. Air is thin enough that in the Earth's atmosphere radio waves travel very close to the speed of light. The wavelength \lambda is the distance from one peak (crest) of the wave's electric field to the next, and is inversely proportional to the
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from '' angular frequency''. Frequency is measured in hertz (Hz) which is ...
f of the wave. The relation of frequency and wavelength in a radio wave traveling in vacuum or air is :\lambda = \frac~, where : c \approx 299.79 \times 10^6 \text~. Equivalently, \;c\; the distance a radio wave travels in a vacuum, in one second, is , which is the wavelength of a 1 
hertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one her ...
radio signal. A 1 
megahertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one her ...
radio wave (mid- AM band) has a wavelength of .


Polarization

Like other electromagnetic waves, a radio wave has a property called
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
, which is defined as the direction of the wave's oscillating electric field perpendicular to the direction of motion. A plane polarized radio wave has an electric field which oscillates in a plane along the direction of motion. In a
horizontally polarized Polarization (also polarisation) is a property applying to transverse waves that specifies the geometrical orientation of the oscillations. In a transverse wave, the direction of the oscillation is perpendicular to the direction of motion of the ...
radio wave the electric field oscillates in a horizontal direction. In a vertically polarized wave the electric field oscillates in a vertical direction. In a circularly polarized wave the electric field at any point rotates about the direction of travel, once per cycle. A right circularly polarized wave rotates in a
right hand In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to it being stronger, faster or more dextrous. The other hand, comparatively often the weaker, less dextrous or simply less subjecti ...
sense about the direction of travel, while a left circularly polarized wave rotates in the opposite sense. The wave's
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
is perpendicular to the electric field, and the electric and magnetic field are oriented in a right hand sense with respect to the direction of radiation. An antenna emits polarized radio waves, with the polarization determined by the direction of the metal antenna elements. For example a dipole antenna consists of two collinear metal rods. If the rods are horizontal it radiates horizontally polarized radio waves, while if the rods are vertical it radiates vertically polarized waves. An antenna receiving the radio waves must have the same polarization as the transmitting antenna, or it will suffer a severe loss of reception. Many natural sources of radio waves, such as the sun, stars and blackbody radiation from warm objects, emit unpolarized waves, consisting of incoherent short wave trains in an equal mixture of polarization states. The polarization of radio waves is determined by a quantum mechanical property of the
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
s called their
spin Spin or spinning most often refers to: * Spinning (textiles), the creation of yarn or thread by twisting fibers together, traditionally by hand spinning * Spin, the rotation of an object around a central axis * Spin (propaganda), an intentionally b ...
. A photon can have one of two possible values of spin; it can spin in a
right hand In human biology, handedness is an individual's preferential use of one hand, known as the dominant hand, due to it being stronger, faster or more dextrous. The other hand, comparatively often the weaker, less dextrous or simply less subjecti ...
sense about its direction of motion, or in a left hand sense. Right circularly polarized radio waves consist of photons spinning in a right hand sense. Left circularly polarized radio waves consist of photons spinning in a left hand sense. Plane polarized radio waves consist of photons in a
quantum superposition Quantum superposition is a fundamental principle of quantum mechanics. It states that, much like waves in classical physics, any two (or more) quantum states can be added together ("superposed") and the result will be another valid quantum ...
of right and left hand spin states. The electric field consists of a superposition of right and left rotating fields, resulting in a plane oscillation.


Propagation characteristics

Radio waves are more widely used for communication than other electromagnetic waves mainly because of their desirable propagation properties, stemming from their large wavelength. Radio waves have the ability to pass through the atmosphere in any weather, foliage, and most building materials, and by diffraction can bend around obstructions, and unlike other electromagnetic waves they tend to be scattered rather than absorbed by objects larger than their wavelength. The study of radio propagation, how radio waves move in free space and over the surface of the Earth, is vitally important in the design of practical radio systems. Radio waves passing through different environments experience reflection, refraction,
polarization Polarization or polarisation may refer to: Mathematics *Polarization of an Abelian variety, in the mathematics of complex manifolds *Polarization of an algebraic form, a technique for expressing a homogeneous polynomial in a simpler fashion by ...
, diffraction, and absorption. Different frequencies experience different combinations of these phenomena in the Earth's atmosphere, making certain radio bands more useful for specific purposes than others. Practical radio systems mainly use three different techniques of radio propagation to communicate: * '' Line of sight:'' This refers to radio waves that travel in a straight line from the transmitting antenna to the receiving antenna. It does not necessarily require a cleared sight path; at lower frequencies radio waves can pass through buildings, foliage and other obstructions. This is the only method of propagation possible at frequencies above 30 MHz. On the surface of the Earth, line of sight propagation is limited by the visual horizon to about 64 km (40 mi). This is the method used by cell phones, FM, television broadcasting and
radar Radar is a detection system that uses radio waves to determine the distance ('' ranging''), angle, and radial velocity of objects relative to the site. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, w ...
. By using dish antennas to transmit beams of microwaves, point-to-point microwave relay links transmit telephone and television signals over long distances up to the visual horizon.
Ground stations A ground station, Earth station, or Earth terminal is a terrestrial radio station designed for extraplanetary telecommunication with spacecraft (constituting part of the ground segment of the spacecraft system), or reception of radio waves fro ...
can communicate with
satellites A satellite or artificial satellite is an object intentionally placed into orbit in outer space. Except for passive satellites, most satellites have an electricity generation system for equipment on board, such as solar panels or radioisotop ...
and spacecraft billions of miles from Earth. ** ''Indirect propagation'': Radio waves can reach points beyond the line-of-sight by '' diffraction'' and ''reflection''. Diffraction causes radio waves to bend around obstructions such as a building edge, a vehicle, or a turn in a hall. Radio waves also partially reflect from surfaces such as walls, floors, ceilings, vehicles and the ground. These propagation methods occur in short range radio communication systems such as cell phones, cordless phones, walkie-talkies, and wireless networks. A drawback of this mode is ''
multipath propagation In radio communication, multipath is the propagation phenomenon that results in radio signals reaching the receiving antenna by two or more paths. Causes of multipath include atmospheric ducting, ionospheric reflection and refraction, and re ...
'', in which radio waves travel from the transmitting to the receiving antenna via multiple paths. The waves interfere, often causing
fading In wireless communications, fading is variation of the attenuation of a signal with various variables. These variables include time, geographical position, and radio frequency. Fading is often modeled as a random process. A fading channel is ...
and other reception problems. * '' Ground waves:'' At lower frequencies below 2 MHz, in the
medium wave Medium wave (MW) is the part of the medium frequency (MF) radio band used mainly for AM radio broadcasting. The spectrum provides about 120 channels with more limited sound quality than FM stations on the FM broadcast band. During the daytime ...
and longwave bands, due to diffraction vertically polarized radio waves can bend over hills and mountains, and propagate beyond the horizon, traveling as
surface wave In physics, a surface wave is a mechanical wave that propagates along the Interface (chemistry), interface between differing media. A common example is gravity waves along the surface of liquids, such as ocean waves. Gravity waves can also occu ...
s which follow the contour of the Earth. This makes it possible for mediumwave and longwave broadcasting stations to have coverage areas beyond the horizon, out to hundreds of miles. As the frequency drops, the losses decrease and the achievable range increases. Military very low frequency (VLF) and extremely low frequency (ELF) communication systems can communicate over most of the Earth, and with submarines hundreds of meters underwater. * ''
Skywave In radio communication, skywave or skip refers to the propagation of radio waves reflected or refracted back toward Earth from the ionosphere, an electrically charged layer of the upper atmosphere. Since it is not limited by the curvature of ...
s:'' At
medium wave Medium wave (MW) is the part of the medium frequency (MF) radio band used mainly for AM radio broadcasting. The spectrum provides about 120 channels with more limited sound quality than FM stations on the FM broadcast band. During the daytime ...
and
shortwave Shortwave radio is radio transmission using shortwave (SW) radio frequencies. There is no official definition of the band, but the range always includes all of the high frequency band (HF), which extends from 3 to 30 MHz (100 to 10 me ...
wavelengths, radio waves reflect off conductive layers of charged particles ( ions) in a part of the atmosphere called the ionosphere. So radio waves directed at an angle into the sky can return to Earth beyond the horizon; this is called "skip" or "skywave" propagation. By using multiple skips communication at intercontinental distances can be achieved. Skywave propagation is variable and dependent on atmospheric conditions; it is most reliable at night and in the winter. Widely used during the first half of the 20th century, due to its unreliability skywave communication has mostly been abandoned. Remaining uses are by military over-the-horizon (OTH) radar systems, by some automated systems, by radio amateurs, and by shortwave broadcasting stations to broadcast to other countries. At
microwave Microwave is a form of electromagnetic radiation with wavelengths ranging from about one meter to one millimeter corresponding to frequency, frequencies between 300 MHz and 300 GHz respectively. Different sources define different fre ...
frequencies, atmospheric gases begin absorbing radio waves, so the range of practical radio communication systems decreases with increasing frequency. Below about 20 GHz atmospheric attenuation is mainly due to water vapor. Above 20 GHz, in the millimeter wave band, other atmospheric gases begin to absorb the waves, limiting practical transmission distances to a kilometer or less. Above 300 GHz, in the terahertz band, virtually all the power is absorbed within a few meters, so the atmosphere is effectively opaque.


Radio communication

In
radio communication Radio is the technology of signaling and communicating using radio waves. Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmit ...
systems, information is transported across space using radio waves. At the sending end, the information to be sent, in the form of a time-varying electrical signal, is applied to a radio transmitter. The information, called the modulation signal, can be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal representing data from a computer. In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency, called the '' carrier wave'' because it creates the radio waves that "carry" the information through the air. The information signal is used to modulate the carrier, altering some aspect of it, "piggybacking" the information on the carrier. The modulated carrier is amplified and applied to an antenna. The oscillating current pushes the electrons in the antenna back and forth, creating oscillating electric and
magnetic field A magnetic field is a vector field that describes the magnetic influence on moving electric charges, electric currents, and magnetic materials. A moving charge in a magnetic field experiences a force perpendicular to its own velocity and to ...
s, which radiate the energy away from the antenna as radio waves. The radio waves carry the information to the receiver location. At the receiver, the oscillating electric and magnetic fields of the incoming radio wave push the electrons in the receiving antenna back and forth, creating a tiny oscillating voltage which is a weaker replica of the current in the transmitting antenna. This voltage is applied to the
radio receiver In radio communications, a radio receiver, also known as a receiver, a wireless, or simply a radio, is an electronic device that receives radio waves and converts the information carried by them to a usable form. It is used with an antenna. Th ...
, which extracts the information signal. The receiver first uses a bandpass filter to separate the desired radio station's radio signal from all the other radio signals picked up by the antenna, then amplifies the signal so it is stronger, then finally extracts the information-bearing modulation signal in a demodulator. The recovered signal is sent to a loudspeaker or earphone to produce sound, or a television display screen to produce a visible image, or other devices. A digital data signal is applied to a computer or microprocessor, which interacts with a human user. The radio waves from many transmitters pass through the air simultaneously without interfering with each other. They can be separated in the receiver because each transmitter's radio waves oscillate at a different rate, in other words each transmitter has a different
frequency Frequency is the number of occurrences of a repeating event per unit of time. It is also occasionally referred to as ''temporal frequency'' for clarity, and is distinct from '' angular frequency''. Frequency is measured in hertz (Hz) which is ...
, measured in
kilohertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one h ...
(kHz),
megahertz The hertz (symbol: Hz) is the unit of frequency in the International System of Units (SI), equivalent to one event (or cycle) per second. The hertz is an SI derived unit whose expression in terms of SI base units is s−1, meaning that one her ...
(MHz) or gigahertz (GHz). The bandpass filter in the receiver consists of a tuned circuit which acts like a resonator, similarly to a tuning fork. It has a natural
resonant frequency Resonance describes the phenomenon of increased amplitude that occurs when the frequency of an applied periodic force (or a Fourier component of it) is equal or close to a natural frequency of the system on which it acts. When an oscillatin ...
at which it oscillates. The resonant frequency is set equal to the frequency of the desired radio station. The oscillating radio signal from the desired station causes the tuned circuit to oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by the tuned circuit and not passed on.


Biological and environmental effects

Radio waves are '' non-ionizing radiation'', which means they do not have enough energy to separate electrons from
atom Every atom is composed of a nucleus and one or more electrons bound to the nucleus. The nucleus is made of one or more protons and a number of neutrons. Only the most common variety of hydrogen has no neutrons. Every solid, liquid, gas ...
s or
molecule A molecule is a group of two or more atoms held together by attractive forces known as chemical bonds; depending on context, the term may or may not include ions which satisfy this criterion. In quantum physics, organic chemistry, and bio ...
s, ionizing them, or break
chemical bond A chemical bond is a lasting attraction between atoms or ions that enables the formation of molecules and crystals. The bond may result from the electrostatic force between oppositely charged ions as in ionic bonds, or through the sharing o ...
s, causing chemical reactions or DNA damage. The main effect of absorption of radio waves by materials is to heat them, similarly to the
infrared Infrared (IR), sometimes called infrared light, is electromagnetic radiation (EMR) with wavelengths longer than those of visible light. It is therefore invisible to the human eye. IR is generally understood to encompass wavelengths from aroun ...
waves radiated by sources of heat such as a
space heater A space heater is a device used to heat a single, small to medium sized area. Operation Electric space heaters fall into four main categories: fan heaters, ceramic, infrared, and oil-filled. * Fan heaters are the cheapest, but are often the ...
or wood fire. The oscillating electric field of the wave causes polar molecules to vibrate back and forth, increasing the temperature; this is how a
microwave oven A microwave oven (commonly referred to as a microwave) is an electric oven that heats and cooks food by exposing it to electromagnetic radiation in the microwave frequency range. This induces polar molecules in the food to rotate and produce ...
cooks food. However, unlike infrared waves, which are mainly absorbed at the surface of objects and cause surface heating, radio waves are able to penetrate the surface and deposit their energy inside materials and biological tissues. The depth to which radio waves penetrate decreases with their frequency, and also depends on the material's resistivity and
permittivity In electromagnetism, the absolute permittivity, often simply called permittivity and denoted by the Greek letter ''ε'' ( epsilon), is a measure of the electric polarizability of a dielectric. A material with high permittivity polarizes more i ...
; it is given by a parameter called the '' skin depth'' of the material, which is the depth within which 63% of the energy is deposited. For example, the 2.45 GHz radio waves (microwaves) in a microwave oven penetrate most foods approximately 2.5 to 3.8 cm (1 to 1.5 inches). Radio waves have been applied to the body for 100 years in the medical therapy of diathermy for deep heating of body tissue, to promote increased blood flow and healing. More recently they have been used to create higher temperatures in hyperthermia treatment and to kill cancer cells. Looking into a source of radio waves at close range, such as the waveguide of a working radio transmitter, can cause damage to the lens of the eye by heating. A strong enough beam of radio waves can penetrate the eye and heat the lens enough to cause cataracts. Since the heating effect is in principle no different from other sources of heat, most research into possible health hazards of exposure to radio waves has focused on "nonthermal" effects; whether radio waves have any effect on tissues besides that caused by heating. Radiofrequency electromagnetic fields have been classified by the International Agency for Research on Cancer (IARC) as having "limited evidence" for its effects on humans and animals. There is weak mechanistic evidence of cancer risk via personal exposure to RF-EMF from mobile telephones. Radio waves can be shielded against by a conductive metal sheet or screen, an enclosure of sheet or screen is called a Faraday cage. A metal screen shields against radio waves as well as a solid sheet as long as the holes in the screen are smaller than about of wavelength of the waves.


Measurement

Since radio frequency radiation has both an electric and a magnetic component, it is often convenient to express intensity of radiation field in terms of units specific to each component. The unit ''volts per meter'' (V/m) is used for the electric component, and the unit ''amperes per meter'' (A/m) is used for the magnetic component. One can speak of an
electromagnetic field An electromagnetic field (also EM field or EMF) is a classical (i.e. non-quantum) field produced by (stationary or moving) electric charges. It is the field described by classical electrodynamics (a classical field theory) and is the classica ...
, and these units are used to provide information about the levels of electric and magnetic field strength at a measurement location. Another commonly used unit for characterizing an RF electromagnetic field is ''power density''. Power density is most accurately used when the point of measurement is far enough away from the RF emitter to be located in what is referred to as the far field zone of the radiation pattern. In closer proximity to the transmitter, i.e., in the "near field" zone, the physical relationships between the electric and magnetic components of the field can be complex, and it is best to use the field strength units discussed above. Power density is measured in terms of power per unit area, for example, milliwatts per square centimeter (mW/cm2). When speaking of frequencies in the microwave range and higher, power density is usually used to express intensity since exposures that might occur would likely be in the far field zone.


See also

* Radio astronomy * Television transmitter


References

* * *


External links

* {{DEFAULTSORT:Radio Wave Radio technology Waves Electromagnetic spectrum