HOME

TheInfoList



OR:

The quantum yield (Φ) of a
radiation In physics, radiation is the emission or transmission of energy in the form of waves or particles through space or through a material medium. This includes: * ''electromagnetic radiation'', such as radio waves, microwaves, infrared, vi ...
-induced process is the number of times a specific event occurs per
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
absorbed by the system.


Applications


Fluorescence spectroscopy

The fluorescence quantum yield is defined as the ratio of the number of photons emitted to the number of photons absorbed.Lakowicz, Joseph R. ''Principles of Fluorescence Spectroscopy'' (Kluwer Academic / Plenum Publishers 1999) p.10. Fluorescence quantum yield is measured on a scale from 0 to 1.0, but is often represented as a percentage. A quantum yield of 1.0 (100%) describes a process where each
photon A photon () is an elementary particle that is a quantum of the electromagnetic field, including electromagnetic radiation such as light and radio waves, and the force carrier for the electromagnetic force. Photons are Massless particle, massless ...
absorbed results in a photon emitted. Substances with the largest quantum yields, such as
rhodamine Rhodamine is a family of related dyes, a subset of the triarylmethane dyes. They are derivatives of xanthene. Important members of the rhodamine family are Rhodamine 6G, Rhodamine 123, and Rhodamine B. They are mainly used to dye paper and inks ...
s, display the brightest emissions; however, compounds with quantum yields of 0.10 are still considered quite fluorescent. Quantum yield is defined by the fraction of
excited state In quantum mechanics, an excited state of a system (such as an atom, molecule or nucleus) is any quantum state of the system that has a higher energy than the ground state (that is, more energy than the absolute minimum). Excitation refers ...
fluorophore A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with s ...
s that decay through fluorescence: where \Phi_ is the fluorescence quantum yield, k_ is the rate constant for radiative relaxation (fluorescence), k_ is the rate constant for all non-radiative relaxation processes. Non-radiative processes are excited state decay mechanisms other than photon emission, which include:
Förster resonance energy transfer Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). ...
,
internal conversion Internal conversion is a non-radioactive, atomic decay process where an excited nucleus interacts electromagnetically with one of the orbital electrons of an atom. This causes the electron to be emitted (ejected) from the atom. Thus, in interna ...
, external conversion, and
intersystem crossing Intersystem crossing (ISC) is an isoenergetic radiationless process involving a transition between the two electronic states with different spin multiplicity. Excited Singlet and Triplet States When an electron in a molecule with a singlet ground ...
. Thus, the fluorescence quantum yield is affected if the rate of any non-radiative pathway changes. The quantum yield can be close to unity if the non-radiative decay rate is much smaller than the rate of radiative decay, that is k_ >k_. Fluorescence quantum yields are measured by comparison to a standard of known quantum yield. The
quinine Quinine is a medication used to treat malaria and babesiosis. This includes the treatment of malaria due to '' Plasmodium falciparum'' that is resistant to chloroquine when artesunate is not available. While sometimes used for nocturnal l ...
salt ''quinine sulfate'' in a
sulfuric acid Sulfuric acid ( American spelling and the preferred IUPAC name) or sulphuric acid ( Commonwealth spelling), known in antiquity as oil of vitriol, is a mineral acid composed of the elements sulfur, oxygen and hydrogen, with the molecular fo ...
solution was regarded as the most common fluorescence standard, however, a recent study revealed that the fluorescence quantum yield of this solution is strongly affected by the temperature, and should no longer be used as the standard solution. The quinine in 0.1M perchloric acid (\Phi=0.60) shows no temperature dependence up to 45°C, therefore it can be considered as a reliable standard solution. Experimentally, relative fluorescence quantum yields can be determined by measuring fluorescence of a
fluorophore A fluorophore (or fluorochrome, similarly to a chromophore) is a fluorescent chemical compound that can re-emit light upon light excitation. Fluorophores typically contain several combined aromatic groups, or planar or cyclic molecules with s ...
of known quantum yield with the same experimental parameters (excitation
wavelength In physics, the wavelength is the spatial period of a periodic wave—the distance over which the wave's shape repeats. It is the distance between consecutive corresponding points of the same phase on the wave, such as two adjacent crests, tr ...
, slit widths,
photomultiplier A photomultiplier is a device that converts incident photons into an electrical signal. Kinds of photomultiplier include: * Photomultiplier tube, a vacuum tube converting incident photons into an electric signal. Photomultiplier tubes (PMTs for sho ...
voltage etc.) as the substance in question. The quantum yield is then calculated by: where \Phi is the quantum yield, '' Int '' is the area under the emission peak (on a wavelength scale), ''A'' is
absorbance Absorbance is defined as "the logarithm of the ratio of incident to transmitted radiant power through a sample (excluding the effects on cell walls)". Alternatively, for samples which scatter light, absorbance may be defined as "the negative lo ...
(also called "optical density") at the excitation wavelength, and ''n'' is the
refractive index In optics, the refractive index (or refraction index) of an optical medium is a dimensionless number that gives the indication of the light bending ability of that medium. The refractive index determines how much the path of light is bent, o ...
of the
solvent A solvent (s) (from the Latin '' solvō'', "loosen, untie, solve") is a substance that dissolves a solute, resulting in a solution. A solvent is usually a liquid but can also be a solid, a gas, or a supercritical fluid. Water is a solvent for ...
. The subscript R denotes the respective values of the reference substance.Albert M. Brouwer
Standards for photoluminescence quantum yield measurements in solution
(IUPAC Technical Report), Pure Appl. Chem., Vol. 83, No. 12, pp. 2213–2228, 2011. doi:10.1351/PAC-REP-10-09-31.
The determination of fluorescence quantum yields in scattering media requires additional considerations and corrections.


FRET efficiency

Förster resonance energy transfer Förster resonance energy transfer (FRET), fluorescence resonance energy transfer, resonance energy transfer (RET) or electronic energy transfer (EET) is a mechanism describing energy transfer between two light-sensitive molecules (chromophores). ...
efficiency (E) is the quantum yield of the energy-transfer transition, i.e. the probability of the energy-transfer event occurring per donor excitation event: where k_ is the rate of energy transfer, k_ the radiative decay rate (fluorescence) of the donor, and k_ are non-radiative relaxation rates (e.g., internal conversion, intersystem crossing, external conversion etc).


Solvent and environmental effects

A fluorophore's environment can impact quantum yield, usually resulting from changes in the rates of non-radiative decay. Many fluorophores used to label macromolecules are sensitive to solvent polarity. The class of 8-anilinonaphthalene-1-sulfonic acid (ANS) probe molecules are essentially non-fluorescent when in aqueous solution, but become highly fluorescent in nonpolar solvents or when bound to proteins and membranes. The quantum yield of ANS is ~0.002 in
aqueous An aqueous solution is a solution in which the solvent is water. It is mostly shown in chemical equations by appending (aq) to the relevant chemical formula. For example, a solution of table salt, or sodium chloride (NaCl), in water would be r ...
buffer, but near 0.4 when bound to serum
albumin Albumin is a family of globular proteins, the most common of which are the serum albumins. All the proteins of the albumin family are water- soluble, moderately soluble in concentrated salt solutions, and experience heat denaturation. Albumin ...
.


Photochemical reactions

The quantum yield of a
photochemical reaction Organic photochemistry encompasses organic reactions that are induced by the action of light. The absorption of ultraviolet light by organic molecules often leads to reactions. In the earliest days, sunlight was employed, while in more modern times ...
describes the number of molecules undergoing a photochemical event per absorbed photon: In a chemical
photodegradation Photodegradation is the alteration of materials by light. Commonly, the term is used loosely to refer to the combined action of sunlight and air, which cause oxidation and hydrolysis. Often photodegradation is intentionally avoided, since it dest ...
process, when a molecule dissociates after absorbing a light
quantum In physics, a quantum (plural quanta) is the minimum amount of any physical entity (physical property) involved in an interaction. The fundamental notion that a physical property can be "quantized" is referred to as "the hypothesis of quantizati ...
, the quantum yield is the number of destroyed molecules divided by the number of photons absorbed by the system. Since not all photons are absorbed productively, the typical quantum yield will be less than 1. Quantum yields greater than 1 are possible for photo-induced or radiation-induced chain reactions, in which a single photon may trigger a long chain of transformations. One example is the reaction of
hydrogen Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxi ...
with
chlorine Chlorine is a chemical element with the symbol Cl and atomic number 17. The second-lightest of the halogens, it appears between fluorine and bromine in the periodic table and its properties are mostly intermediate between them. Chlorine ...
, in which as many as 106 molecules of
hydrogen chloride The compound hydrogen chloride has the chemical formula and as such is a hydrogen halide. At room temperature, it is a colourless gas, which forms white fumes of hydrochloric acid upon contact with atmospheric water vapor. Hydrogen chloride g ...
can be formed per quantum of blue light absorbed. Quantum yields of photochemical reactions can be highly dependent on the structure, proximity and concentration of the reactive chromophores, the type of solvent environment as well as the wavelength of the incident light. Such effects can be studied with wavelength-tunable lasers and the resulting quantum yield data can help predict conversion and selectivity of photochemical reactions. In optical spectroscopy, the quantum yield is the probability that a given quantum state is formed from the system initially prepared in some other quantum state. For example, a singlet to triplet transition quantum yield is the fraction of molecules that, after being
photoexcited Photoexcitation is the production of an excited state of a quantum system by photon absorption. The excited state originates from the interaction between a photon and the quantum system. Photons carry energy that is determined by the wavelengths ...
into a singlet state, cross over to the triplet state.


Photosynthesis

Quantum yield is used in modeling
photosynthesis Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that, through cellular respiration, can later be released to fuel the organism's activities. Some of this chemical energy is stored in ...
:


See also

* Quantum dot * Quantum efficiency


References

{{DEFAULTSORT:Quantum Yield Radiation Spectroscopy Photochemistry