Quillen's Theorem A
   HOME

TheInfoList



OR:

In
topology In mathematics, topology (from the Greek words , and ) is concerned with the properties of a geometric object that are preserved under continuous deformations, such as stretching, twisting, crumpling, and bending; that is, without closing ...
, a branch of mathematics, Quillen's Theorem A gives a sufficient condition for the
classifying space In mathematics, specifically in homotopy theory, a classifying space ''BG'' of a topological group ''G'' is the quotient of a weakly contractible space ''EG'' (i.e. a topological space all of whose homotopy groups are trivial) by a proper free ac ...
s of two
categories Category, plural categories, may refer to: Philosophy and general uses *Categorization, categories in cognitive science, information science and generally *Category of being * ''Categories'' (Aristotle) *Category (Kant) * Categories (Peirce) * ...
to be homotopy equivalent. Quillen's Theorem B gives a sufficient condition for a square consisting of classifying spaces of categories to be homotopy Cartesian. The two theorems play central roles in Quillen's
Q-construction In algebra, Quillen's Q-construction associates to an exact category (e.g., an abelian category) an algebraic K-theory. More precisely, given an exact category ''C'', the construction creates a topological space B^+C so that \pi_0 (B^+C) is the Gr ...
in
algebraic K-theory Algebraic ''K''-theory is a subject area in mathematics with connections to geometry, topology, ring theory, and number theory. Geometric, algebraic, and arithmetic objects are assigned objects called ''K''-groups. These are groups in the sense ...
and are named after
Daniel Quillen Daniel Gray "Dan" Quillen (June 22, 1940 – April 30, 2011) was an American mathematician. He is known for being the "prime architect" of higher algebraic ''K''-theory, for which he was awarded the Cole Prize in 1975 and the Fields Medal in 197 ...
. The precise statements of the theorems are as follows. In general, the homotopy fiber of Bf: BC \to BD is not naturally the classifying space of a category: there is no natural category Ff such that FBf = BFf. Theorem B constructs Ff in a case when f is especially nice.


References

* * * * Theorems in topology {{topology-stub