In
geometry
Geometry (; ) is, with arithmetic, one of the oldest branches of mathematics. It is concerned with properties of space such as the distance, shape, size, and relative position of figures. A mathematician who works in the field of geometry is c ...
, a quasiregular polyhedron is a
uniform polyhedron
In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive (i.e., there is an isometry mapping any vertex onto any other). It follows that all vertices are congruent.
Uniform polyhedra may be regular (if also fa ...
that has exactly two kinds of
regular faces, which alternate around each
vertex
Vertex, vertices or vertexes may refer to:
Science and technology Mathematics and computer science
*Vertex (geometry), a point where two or more curves, lines, or edges meet
*Vertex (computer graphics), a data structure that describes the position ...
. They are
vertex-transitive
In geometry, a polytope (e.g. a polygon or polyhedron) or a tiling is isogonal or vertex-transitive if all its vertices are equivalent under the symmetries of the figure. This implies that each vertex is surrounded by the same kinds of face in ...
and
edge-transitive
In geometry, a polytope (for example, a polygon or a polyhedron) or a tiling is isotoxal () or edge-transitive if its symmetries act transitively on its edges. Informally, this means that there is only one type of edge to the object: given two ...
, hence a step closer to
regular polyhedra
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equival ...
than the
semiregular, which are merely vertex-transitive.
Their
dual figures are
face-transitive
In geometry, a tessellation of dimension (a plane tiling) or higher, or a polytope of dimension (a polyhedron) or higher, is isohedral or face-transitive if all its faces are the same. More specifically, all faces must be not merely congruent ...
and edge-transitive; they have exactly two kinds of regular
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
s, which alternate around each
face
The face is the front of an animal's head that features the eyes, nose and mouth, and through which animals express many of their emotions. The face is crucial for human identity, and damage such as scarring or developmental deformities may aff ...
. They are sometimes also considered quasiregular.
There are only two
convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytope ...
quasiregular polyhedra: the
cuboctahedron
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
and the
icosidodecahedron
In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 id ...
. Their names, given by
Kepler
Johannes Kepler (; ; 27 December 1571 – 15 November 1630) was a German astronomer, mathematician, astrologer, natural philosopher and writer on music. He is a key figure in the 17th-century Scientific Revolution, best known for his laws o ...
, come from recognizing that their faces are all the faces (turned differently) of the
dual-pair
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
and
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, in the first case, and of the dual-pair
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
and
dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
, in the second case.
These forms representing a pair of a regular figure and its dual can be given a vertical
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
or ''r'', to represent that their faces are all the faces (turned differently) of both the regular ' and the dual regular '. A quasiregular polyhedron with this symbol will have a
''p.q.p.q'' (or ''(p.q)
2'').
More generally, a quasiregular figure can have a
''(p.q)
r'', representing ''r'' (2 or more) sequences of the faces around the vertex.
Tilings of the plane can also be quasiregular, specifically the
trihexagonal tiling
In geometry, the trihexagonal tiling is one of 11 uniform tilings of the Euclidean plane by regular polygons. See in particular Theorem 2.1.3, p. 59 (classification of uniform tilings); Figure 2.1.5, p.63 (illustration of this tiling), Theorem 2. ...
, with vertex configuration (3.6)
2.
Other quasiregular tilings exist on the hyperbolic plane, like the
triheptagonal tiling, (3.7)
2. Or more generally: ''(p.q)
2'', with ''1/p + 1/q < 1/2''.
Regular polyhedra and tilings with an even number of faces at each vertex can also be considered quasiregular by differentiating between faces of the same order, by representing them differently, like coloring them alternately (without defining any surface orientation). A regular figure with
Schläfli symbol
In geometry, the Schläfli symbol is a notation of the form \ that defines regular polytopes and tessellations.
The Schläfli symbol is named after the 19th-century Swiss mathematician Ludwig Schläfli, who generalized Euclidean geometry to more ...
' can be considered quasiregular, with vertex configuration ''(p.p)
q/2'', if ''q'' is even.
Examples:
The regular
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, with Schläfli symbol and 4 being even, can be considered quasiregular as a ''tetratetrahedron'' (2 sets of 4 triangles of the
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
), with vertex configuration (3.3)
4/2 = (3
a.3
b)
2, alternating two colors of triangular faces.
The
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of the s ...
, with vertex configuration 4
4 and 4 being even, can be considered quasiregular, with vertex configuration (4.4)
4/2 = (4
a.4
b)
2, colored as a ''checkerboard''.
The
triangular tiling
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
, with vertex configuration 3
6 and 6 being even, can be considered quasiregular, with vertex configuration (3.3)
6/2 = (3
a.3
b)
3, alternating two colors of triangular faces.
Wythoff construction
Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
defines a ''quasiregular polyhedron'' as one having a
Wythoff symbol
In geometry, the Wythoff symbol is a notation representing a Wythoff construction of a uniform polyhedron or plane tiling within a Schwarz triangle. It was first used by Coxeter, Longuet-Higgins and Miller in their enumeration of the uniform pol ...
in the form ''p , q r'', and it is regular if q=2 or q=r.
[ Coxeter, H.S.M., Longuet-Higgins, M.S. and Miller, J.C.P. Uniform Polyhedra, ''Philosophical Transactions of the Royal Society of London'' 246 A (1954), pp. 401–450. (Section 7, The regular and quasiregular polyhedra ''p , q r'')]
The
Coxeter-Dynkin diagram is another symbolic representation that shows the quasiregular relation between the two dual-regular forms:
The convex quasiregular polyhedra
There are two uniform
convex
Convex or convexity may refer to:
Science and technology
* Convex lens, in optics
Mathematics
* Convex set, containing the whole line segment that joins points
** Convex polygon, a polygon which encloses a convex set of points
** Convex polytope ...
quasiregular polyhedra:
#The
cuboctahedron
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
, vertex configuration (3.4)
2,
Coxeter-Dynkin diagram
#The
icosidodecahedron
In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 id ...
, vertex configuration (3.5)
2, ''Coxeter-Dynkin diagram''
In addition, the
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, which is also
regular,
, vertex configuration (3.3)
2, can be considered quasiregular if alternate faces are given different colors. In this form it is sometimes known as the ''tetratetrahedron''. The remaining convex regular polyhedra have an odd number of faces at each vertex so cannot be colored in a way that preserves edge transitivity. It has ''Coxeter-Dynkin diagram''
Each of these forms the common core of a
dual pair of
regular polyhedra
A regular polyhedron is a polyhedron whose symmetry group acts transitively on its flags. A regular polyhedron is highly symmetrical, being all of edge-transitive, vertex-transitive and face-transitive. In classical contexts, many different equival ...
. The names of two of these give clues to the associated dual pair: respectively
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
, and
icosahedron
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
dodecahedron
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
. The
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
is the common core of a dual pair of
tetrahedra
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
(a compound known as the
stella octangula
The stellated octahedron is the only stellation of the octahedron. It is also called the stella octangula (Latin for "eight-pointed star"), a name given to it by Johannes Kepler in 1609, though it was known to earlier geometers. It was depict ...
); when derived in this way, the
octahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
is sometimes called the ''tetratetrahedron'', as
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
.
Each of these quasiregular polyhedra can be constructed by a
rectification operation on either regular parent,
truncating the vertices fully, until each original edge is reduced to its midpoint.
Quasiregular tilings
This sequence continues as the
trihexagonal tiling
In geometry, the trihexagonal tiling is one of 11 uniform tilings of the Euclidean plane by regular polygons. See in particular Theorem 2.1.3, p. 59 (classification of uniform tilings); Figure 2.1.5, p.63 (illustration of this tiling), Theorem 2. ...
,
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
''(3.6)
2'' - a quasiregular tiling based on the
triangular tiling
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
and
hexagonal tiling
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling).
English mathemat ...
.
The
checkerboard
A checkerboard (American English) or chequerboard (British English; see spelling differences) is a board of checkered pattern on which checkers (also known as English draughts) is played. Most commonly, it consists of 64 squares (8×8) of altern ...
pattern is a quasiregular coloring of the
square tiling
In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of meaning it has 4 squares around every vertex.
Conway called it a quadrille.
The internal angle of the s ...
,
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
''(4.4)
2'':
The
triangular tiling
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
can also be considered quasiregular, with three sets of alternating triangles at each vertex, (3.3)
3:
In the hyperbolic plane, this sequence continues further, for example the
triheptagonal tiling,
vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
''(3.7)
2'' - a quasiregular tiling based on the ''order-7 triangular tiling'' and ''heptagonal tiling''.
Nonconvex examples
Coxeter, H.S.M. et al. (1954) also classify certain
star polyhedra
In geometry, a star polyhedron is a polyhedron which has some repetitive quality of nonconvexity giving it a star-like visual quality.
There are two general kinds of star polyhedron:
*Polyhedra which self-intersect in a repetitive way.
*Concave p ...
, having the same characteristics, as being quasiregular.
Two are based on dual pairs of regular
Kepler–Poinsot solids, in the same way as for the convex examples:
the
great icosidodecahedron
In geometry, the great icosidodecahedron is a nonconvex uniform polyhedron, indexed as U54. It has 32 faces (20 triangles and 12 pentagrams), 60 edges, and 30 vertices. It is given a Schläfli symbol r. It is the rectification of the great stell ...
, and the
dodecadodecahedron
In geometry, the dodecadodecahedron is a nonconvex uniform polyhedron, indexed as U36. It is the rectification of the great dodecahedron (and that of its dual, the small stellated dodecahedron). It was discovered independently by , and .
The e ...
:
Nine more are the
hemipolyhedra
In geometry, a hemipolyhedron is a uniform star polyhedron some of whose faces pass through its center. These "hemi" faces lie parallel to the faces of some other symmetrical polyhedron, and their count is half the number of faces of that other p ...
, which are
faceted forms of the aforementioned quasiregular polyhedra derived from rectification of regular polyhedra. These include equatorial faces passing through the centre of the polyhedra:
Lastly there are three
ditrigonal forms, all facetings of the regular dodecahedron, whose vertex figures contain three alternations of the two face types:
In the Euclidean plane, the sequence of hemipolyhedra continues with the following four star tilings, where
apeirogon
In geometry, an apeirogon () or infinite polygon is a generalized polygon with a countably infinite number of sides. Apeirogons are the two-dimensional case of infinite polytopes.
In some literature, the term "apeirogon" may refer only to the ...
s appear as the aforementioned equatorial polygons:
Quasiregular duals
Some authorities argue that, since the duals of the quasiregular solids share the same symmetries, these duals should be called quasiregular too. But not everybody uses this terminology. These duals are transitive on their edges and faces (but not on their vertices); they are the edge-transitive
Catalan solid
In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. There are 13 Catalan solids. They are named for the Belgian mathematician Eugène Catalan, who first described them in 1865.
The Catalan sol ...
s. The convex ones are, in corresponding order as above:
#The
rhombic dodecahedron
In geometry, the rhombic dodecahedron is a convex polyhedron with 12 congruent rhombic faces. It has 24 edges, and 14 vertices of 2 types. It is a Catalan solid, and the dual polyhedron of the cuboctahedron.
Properties
The rhombic dodecahedro ...
, with two ''types'' of alternating vertices, 8 with three rhombic faces, and 6 with four rhombic faces.
#The
rhombic triacontahedron
In geometry, the rhombic triacontahedron, sometimes simply called the triacontahedron as it is the most common thirty-faced polyhedron, is a convex polyhedron with 30 rhombic faces. It has 60 edges and 32 vertices of two types. It is a Cata ...
, with two ''types'' of alternating vertices, 20 with three rhombic faces, and 12 with five rhombic faces.
In addition, by duality with the octahedron, the
cube
In geometry, a cube is a three-dimensional solid object bounded by six square faces, facets or sides, with three meeting at each vertex. Viewed from a corner it is a hexagon and its net is usually depicted as a cross.
The cube is the only r ...
, which is usually
regular, can be made quasiregular if alternate vertices are given different colors.
Their
s are of the form V3.n.3.n, and
Coxeter-Dynkin diagram
These three quasiregular duals are also characterised by having
rhombic faces.
This rhombic-faced pattern continues as V(3.6)
2, the
rhombille tiling
In geometry, the rhombille tiling, also known as tumbling blocks, reversible cubes, or the dice lattice, is a tessellation of identical 60° rhombi on the Euclidean plane. Each rhombus has two 60° and two 120° angles; rhombi with this shape a ...
.
Quasiregular polytopes and honeycombs
In higher dimensions, Coxeter defined a quasiregular polytope or honeycomb to have regular facets and quasiregular vertex figures. It follows that all vertex figures are congruent and that there are two kinds of facets, which alternate.
[
In Euclidean 4-space, the regular ]16-cell
In geometry, the 16-cell is the regular convex 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol . It is one of the six regular convex 4-polytopes first described by the Swiss mathematician Ludwig Schläfli in the mi ...
can also be seen as quasiregular as an alternated tesseract
In geometry, a tesseract is the four-dimensional analogue of the cube; the tesseract is to the cube as the cube is to the square. Just as the surface of the cube consists of six square faces, the hypersurface of the tesseract consists of eig ...
, h, Coxeter diagram
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
s: = , composed of alternating tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
and tetrahedron
In geometry, a tetrahedron (plural: tetrahedra or tetrahedrons), also known as a triangular pyramid, is a polyhedron composed of four triangular faces, six straight edges, and four vertex corners. The tetrahedron is the simplest of all the o ...
cells. Its vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
is the quasiregular tetratetrahedron
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
(an octahedron with tetrahedral symmetry), .
The only quasiregular honeycomb in Euclidean 3-space is the alternated cubic honeycomb
The tetrahedral-octahedral honeycomb, alternated cubic honeycomb is a quasiregular space-filling tessellation (or honeycomb) in Euclidean 3-space. It is composed of alternating regular octahedra and tetrahedra in a ratio of 1:2.
Other names incl ...
, h, Coxeter diagrams: = , composed of alternating tetrahedral and octahedral
In geometry, an octahedron (plural: octahedra, octahedrons) is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at ea ...
cells. Its vertex figure is the quasiregular cuboctahedron
A cuboctahedron is a polyhedron with 8 triangular faces and 6 square faces. A cuboctahedron has 12 identical vertices, with 2 triangles and 2 squares meeting at each, and 24 identical edges, each separating a triangle from a square. As such, it ...
, .[Coxeter, Regular Polytopes, 4.7 Other honeycombs. p.69, p.88]
In hyperbolic 3-space, one quasiregular honeycomb is the alternated order-5 cubic honeycomb, h, Coxeter diagrams: = , composed of alternating tetrahedral and icosahedral
In geometry, an icosahedron ( or ) is a polyhedron with 20 faces. The name comes and . The plural can be either "icosahedra" () or "icosahedrons".
There are infinitely many non- similar shapes of icosahedra, some of them being more symmetrica ...
cells. Its vertex figure is the quasiregular icosidodecahedron
In geometry, an icosidodecahedron is a polyhedron with twenty (''icosi'') triangular faces and twelve (''dodeca'') pentagonal faces. An icosidodecahedron has 30 identical vertices, with two triangles and two pentagons meeting at each, and 60 id ...
, . A related paracompact alternated order-6 cubic honeycomb, h has alternating tetrahedral and hexagonal tiling cells with vertex figure is a quasiregular trihexagonal tiling
In geometry, the trihexagonal tiling is one of 11 uniform tilings of the Euclidean plane by regular polygons. See in particular Theorem 2.1.3, p. 59 (classification of uniform tilings); Figure 2.1.5, p.63 (illustration of this tiling), Theorem 2. ...
, .
Regular polychora or honeycombs of the form or can have their symmetry cut in half as into quasiregular form , creating alternately colored cells. These cases include the Euclidean cubic honeycomb
The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation (or honeycomb) in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a re ...
with cubic cells, and compact hyperbolic with dodecahedral
In geometry, a dodecahedron (Greek , from ''dōdeka'' "twelve" + ''hédra'' "base", "seat" or "face") or duodecahedron is any polyhedron with twelve flat faces. The most familiar dodecahedron is the regular dodecahedron with regular pentagon ...
cells, and paracompact with infinite hexagonal tiling
In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of or (as a truncated triangular tiling).
English mathemat ...
cells. They have four cells around each edge, alternating in 2 colors. Their vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
s are quasiregular tetratetrahedra, = .
Similarly regular hyperbolic honeycombs of the form or can have their symmetry cut in half as into quasiregular form , creating alternately colored cells. They have six cells around each edge, alternating in 2 colors. Their vertex figure
In geometry, a vertex figure, broadly speaking, is the figure exposed when a corner of a polyhedron or polytope is sliced off.
Definitions
Take some corner or Vertex (geometry), vertex of a polyhedron. Mark a point somewhere along each connect ...
s are quasiregular triangular tiling
In geometry, the triangular tiling or triangular tessellation is one of the three regular tilings of the Euclidean plane, and is the only such tiling where the constituent shapes are not parallelogons. Because the internal angle of the equilater ...
s, .
See also
* Chiral polytope
* Rectification (geometry)
In Euclidean geometry, rectification, also known as critical truncation or complete-truncation, is the process of truncating a polytope by marking the midpoints of all its Edge (geometry), edges, and cutting off its Vertex (geometry), vertices ...
Notes
References
*Cromwell, P. ''Polyhedra'', Cambridge University Press (1977).
*Coxeter
Harold Scott MacDonald "Donald" Coxeter, (9 February 1907 – 31 March 2003) was a British and later also Canadian geometer. He is regarded as one of the greatest geometers of the 20th century.
Biography
Coxeter was born in Kensington to ...
, ''Regular Polytopes
In mathematics, a regular polytope is a polytope whose symmetry group acts transitively on its flags, thus giving it the highest degree of symmetry. All its elements or -faces (for all , where is the dimension of the polytope) — cells, ...
'', (3rd edition, 1973), Dover edition, , 2.3 ''Quasi-Regular Polyhedra.'' (p. 17), Quasi-regular honeycombs p.69
External links
*
* {{Mathworld , urlname=UniformPolyhedron , title=Uniform polyhedron Quasi-regular polyhedra: (p.q)r
* George Hart
Quasiregular polyhedra